Metamath Proof Explorer


Theorem mplmapghm

Description: The function H mapping polynomials p to their coefficient given a bag of variables F is a group homomorphism. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses mplmapghm.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplmapghm.b 𝐵 = ( Base ‘ 𝑃 )
mplmapghm.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
mplmapghm.h 𝐻 = ( 𝑝𝐵 ↦ ( 𝑝𝐹 ) )
mplmapghm.i ( 𝜑𝐼𝑉 )
mplmapghm.r ( 𝜑𝑅 ∈ Grp )
mplmapghm.f ( 𝜑𝐹𝐷 )
Assertion mplmapghm ( 𝜑𝐻 ∈ ( 𝑃 GrpHom 𝑅 ) )

Proof

Step Hyp Ref Expression
1 mplmapghm.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplmapghm.b 𝐵 = ( Base ‘ 𝑃 )
3 mplmapghm.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
4 mplmapghm.h 𝐻 = ( 𝑝𝐵 ↦ ( 𝑝𝐹 ) )
5 mplmapghm.i ( 𝜑𝐼𝑉 )
6 mplmapghm.r ( 𝜑𝑅 ∈ Grp )
7 mplmapghm.f ( 𝜑𝐹𝐷 )
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 eqid ( +g𝑃 ) = ( +g𝑃 )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 1 mplgrp ( ( 𝐼𝑉𝑅 ∈ Grp ) → 𝑃 ∈ Grp )
12 5 6 11 syl2anc ( 𝜑𝑃 ∈ Grp )
13 simpr ( ( 𝜑𝑝𝐵 ) → 𝑝𝐵 )
14 1 8 2 3 13 mplelf ( ( 𝜑𝑝𝐵 ) → 𝑝 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
15 7 adantr ( ( 𝜑𝑝𝐵 ) → 𝐹𝐷 )
16 14 15 ffvelcdmd ( ( 𝜑𝑝𝐵 ) → ( 𝑝𝐹 ) ∈ ( Base ‘ 𝑅 ) )
17 16 4 fmptd ( 𝜑𝐻 : 𝐵 ⟶ ( Base ‘ 𝑅 ) )
18 simprl ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑞𝐵 )
19 simprr ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑟𝐵 )
20 1 2 10 9 18 19 mpladd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝑞 ( +g𝑃 ) 𝑟 ) = ( 𝑞f ( +g𝑅 ) 𝑟 ) )
21 20 fveq1d ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑞 ( +g𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞f ( +g𝑅 ) 𝑟 ) ‘ 𝐹 ) )
22 1 8 2 3 18 mplelf ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑞 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
23 22 ffnd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑞 Fn 𝐷 )
24 1 8 2 3 19 mplelf ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑟 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
25 24 ffnd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑟 Fn 𝐷 )
26 ovex ( ℕ0m 𝐼 ) ∈ V
27 3 26 rabex2 𝐷 ∈ V
28 27 a1i ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝐷 ∈ V )
29 inidm ( 𝐷𝐷 ) = 𝐷
30 eqidd ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝐹𝐷 ) → ( 𝑞𝐹 ) = ( 𝑞𝐹 ) )
31 eqidd ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝐹𝐷 ) → ( 𝑟𝐹 ) = ( 𝑟𝐹 ) )
32 23 25 28 28 29 30 31 ofval ( ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) ∧ 𝐹𝐷 ) → ( ( 𝑞f ( +g𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞𝐹 ) ( +g𝑅 ) ( 𝑟𝐹 ) ) )
33 7 32 mpidan ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑞f ( +g𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞𝐹 ) ( +g𝑅 ) ( 𝑟𝐹 ) ) )
34 21 33 eqtrd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑞 ( +g𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞𝐹 ) ( +g𝑅 ) ( 𝑟𝐹 ) ) )
35 fveq1 ( 𝑝 = ( 𝑞 ( +g𝑃 ) 𝑟 ) → ( 𝑝𝐹 ) = ( ( 𝑞 ( +g𝑃 ) 𝑟 ) ‘ 𝐹 ) )
36 12 adantr ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → 𝑃 ∈ Grp )
37 2 9 36 18 19 grpcld ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝑞 ( +g𝑃 ) 𝑟 ) ∈ 𝐵 )
38 fvexd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝑞 ( +g𝑃 ) 𝑟 ) ‘ 𝐹 ) ∈ V )
39 4 35 37 38 fvmptd3 ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g𝑃 ) 𝑟 ) ) = ( ( 𝑞 ( +g𝑃 ) 𝑟 ) ‘ 𝐹 ) )
40 fveq1 ( 𝑝 = 𝑞 → ( 𝑝𝐹 ) = ( 𝑞𝐹 ) )
41 fvexd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝑞𝐹 ) ∈ V )
42 4 40 18 41 fvmptd3 ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐻𝑞 ) = ( 𝑞𝐹 ) )
43 fveq1 ( 𝑝 = 𝑟 → ( 𝑝𝐹 ) = ( 𝑟𝐹 ) )
44 fvexd ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝑟𝐹 ) ∈ V )
45 4 43 19 44 fvmptd3 ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐻𝑟 ) = ( 𝑟𝐹 ) )
46 42 45 oveq12d ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( ( 𝐻𝑞 ) ( +g𝑅 ) ( 𝐻𝑟 ) ) = ( ( 𝑞𝐹 ) ( +g𝑅 ) ( 𝑟𝐹 ) ) )
47 34 39 46 3eqtr4d ( ( 𝜑 ∧ ( 𝑞𝐵𝑟𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g𝑃 ) 𝑟 ) ) = ( ( 𝐻𝑞 ) ( +g𝑅 ) ( 𝐻𝑟 ) ) )
48 2 8 9 10 12 6 17 47 isghmd ( 𝜑𝐻 ∈ ( 𝑃 GrpHom 𝑅 ) )