Step |
Hyp |
Ref |
Expression |
1 |
|
mplmapghm.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplmapghm.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
mplmapghm.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
4 |
|
mplmapghm.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑝 ‘ 𝐹 ) ) |
5 |
|
mplmapghm.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
mplmapghm.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
7 |
|
mplmapghm.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
1
|
mplgrp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp ) → 𝑃 ∈ Grp ) |
12 |
5 6 11
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
14 |
1 8 2 3 13
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ 𝐷 ) |
16 |
14 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ‘ 𝐹 ) ∈ ( Base ‘ 𝑅 ) ) |
17 |
16 4
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 ∈ 𝐵 ) |
20 |
1 2 10 9 18 19
|
mpladd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) = ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ) |
21 |
20
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) ) |
22 |
1 8 2 3 18
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
23 |
22
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 Fn 𝐷 ) |
24 |
1 8 2 3 19
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
25 |
24
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 Fn 𝐷 ) |
26 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
27 |
3 26
|
rabex2 |
⊢ 𝐷 ∈ V |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
29 |
|
inidm |
⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 |
30 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑞 ‘ 𝐹 ) = ( 𝑞 ‘ 𝐹 ) ) |
31 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑟 ‘ 𝐹 ) = ( 𝑟 ‘ 𝐹 ) ) |
32 |
23 25 28 28 29 30 31
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
33 |
7 32
|
mpidan |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
34 |
21 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
35 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑝 ‘ 𝐹 ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ) |
36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
37 |
2 9 36 18 19
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
38 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ∈ V ) |
39 |
4 35 37 38
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ) |
40 |
|
fveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ‘ 𝐹 ) = ( 𝑞 ‘ 𝐹 ) ) |
41 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ‘ 𝐹 ) ∈ V ) |
42 |
4 40 18 41
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑞 ) = ( 𝑞 ‘ 𝐹 ) ) |
43 |
|
fveq1 |
⊢ ( 𝑝 = 𝑟 → ( 𝑝 ‘ 𝐹 ) = ( 𝑟 ‘ 𝐹 ) ) |
44 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑟 ‘ 𝐹 ) ∈ V ) |
45 |
4 43 19 44
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑟 ) = ( 𝑟 ‘ 𝐹 ) ) |
46 |
42 45
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐻 ‘ 𝑟 ) ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
47 |
34 39 46
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐻 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐻 ‘ 𝑟 ) ) ) |
48 |
2 8 9 10 12 6 17 47
|
isghmd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 GrpHom 𝑅 ) ) |