| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplmapghm.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplmapghm.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
mplmapghm.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 4 |
|
mplmapghm.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑝 ‘ 𝐹 ) ) |
| 5 |
|
mplmapghm.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mplmapghm.r |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 7 |
|
mplmapghm.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
1
|
mplgrp |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp ) → 𝑃 ∈ Grp ) |
| 12 |
5 6 11
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 14 |
1 8 2 3 13
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ 𝐷 ) |
| 16 |
14 15
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑝 ‘ 𝐹 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
16 4
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) |
| 19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 ∈ 𝐵 ) |
| 20 |
1 2 10 9 18 19
|
mpladd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) = ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ) |
| 21 |
20
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) ) |
| 22 |
1 8 2 3 18
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 23 |
22
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 Fn 𝐷 ) |
| 24 |
1 8 2 3 19
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 25 |
24
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 Fn 𝐷 ) |
| 26 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 27 |
3 26
|
rabex2 |
⊢ 𝐷 ∈ V |
| 28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
| 29 |
|
inidm |
⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 |
| 30 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑞 ‘ 𝐹 ) = ( 𝑞 ‘ 𝐹 ) ) |
| 31 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( 𝑟 ‘ 𝐹 ) = ( 𝑟 ‘ 𝐹 ) ) |
| 32 |
23 25 28 28 29 30 31
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ 𝐹 ∈ 𝐷 ) → ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 33 |
7 32
|
mpidan |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ∘f ( +g ‘ 𝑅 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 34 |
21 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 35 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑝 ‘ 𝐹 ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ) |
| 36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 37 |
2 9 36 18 19
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
| 38 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ∈ V ) |
| 39 |
4 35 37 38
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ‘ 𝐹 ) ) |
| 40 |
|
fveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ‘ 𝐹 ) = ( 𝑞 ‘ 𝐹 ) ) |
| 41 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ‘ 𝐹 ) ∈ V ) |
| 42 |
4 40 18 41
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑞 ) = ( 𝑞 ‘ 𝐹 ) ) |
| 43 |
|
fveq1 |
⊢ ( 𝑝 = 𝑟 → ( 𝑝 ‘ 𝐹 ) = ( 𝑟 ‘ 𝐹 ) ) |
| 44 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑟 ‘ 𝐹 ) ∈ V ) |
| 45 |
4 43 19 44
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ 𝑟 ) = ( 𝑟 ‘ 𝐹 ) ) |
| 46 |
42 45
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐻 ‘ 𝑟 ) ) = ( ( 𝑞 ‘ 𝐹 ) ( +g ‘ 𝑅 ) ( 𝑟 ‘ 𝐹 ) ) ) |
| 47 |
34 39 46
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐻 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐻 ‘ 𝑟 ) ) ) |
| 48 |
2 8 9 10 12 6 17 47
|
isghmd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 GrpHom 𝑅 ) ) |