Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
2 |
|
adddi |
|- ( ( ( A + B ) e. CC /\ C e. CC /\ D e. CC ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) ) |
3 |
2
|
3expb |
|- ( ( ( A + B ) e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) ) |
4 |
1 3
|
sylan |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) ) |
5 |
|
adddir |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
6 |
5
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
7 |
6
|
adantrr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
8 |
|
adddir |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
9 |
8
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ D e. CC ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
10 |
9
|
adantrl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
11 |
7 10
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) = ( ( ( A x. C ) + ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
12 |
|
mulcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
13 |
12
|
ad2ant2r |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. C ) e. CC ) |
14 |
|
mulcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) e. CC ) |
15 |
14
|
ad2ant2lr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) e. CC ) |
16 |
|
mulcl |
|- ( ( A e. CC /\ D e. CC ) -> ( A x. D ) e. CC ) |
17 |
|
mulcl |
|- ( ( B e. CC /\ D e. CC ) -> ( B x. D ) e. CC ) |
18 |
|
addcl |
|- ( ( ( A x. D ) e. CC /\ ( B x. D ) e. CC ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
19 |
16 17 18
|
syl2an |
|- ( ( ( A e. CC /\ D e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
20 |
19
|
anandirs |
|- ( ( ( A e. CC /\ B e. CC ) /\ D e. CC ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
21 |
20
|
adantrl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
22 |
13 15 21
|
add32d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) + ( B x. C ) ) ) |
23 |
|
mulcom |
|- ( ( B e. CC /\ D e. CC ) -> ( B x. D ) = ( D x. B ) ) |
24 |
23
|
ad2ant2l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) = ( D x. B ) ) |
25 |
24
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( A x. D ) ) + ( B x. D ) ) = ( ( ( A x. C ) + ( A x. D ) ) + ( D x. B ) ) ) |
26 |
16
|
ad2ant2rl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. D ) e. CC ) |
27 |
17
|
ad2ant2l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) e. CC ) |
28 |
13 26 27
|
addassd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( A x. D ) ) + ( B x. D ) ) = ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
29 |
|
mulcl |
|- ( ( D e. CC /\ B e. CC ) -> ( D x. B ) e. CC ) |
30 |
29
|
ancoms |
|- ( ( B e. CC /\ D e. CC ) -> ( D x. B ) e. CC ) |
31 |
30
|
ad2ant2l |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( D x. B ) e. CC ) |
32 |
13 26 31
|
add32d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( A x. D ) ) + ( D x. B ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) ) |
33 |
25 28 32
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) ) |
34 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
35 |
34
|
ad2ant2lr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) = ( C x. B ) ) |
36 |
33 35
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) + ( B x. C ) ) = ( ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) + ( C x. B ) ) ) |
37 |
|
addcl |
|- ( ( ( A x. C ) e. CC /\ ( D x. B ) e. CC ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
38 |
12 30 37
|
syl2an |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
39 |
38
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
40 |
|
mulcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C x. B ) e. CC ) |
41 |
40
|
ancoms |
|- ( ( B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
42 |
41
|
ad2ant2lr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C x. B ) e. CC ) |
43 |
39 26 42
|
addassd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) + ( C x. B ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
44 |
22 36 43
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
45 |
4 11 44
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |