Step |
Hyp |
Ref |
Expression |
1 |
|
mulgval.b |
|- B = ( Base ` G ) |
2 |
|
mulgval.p |
|- .+ = ( +g ` G ) |
3 |
|
mulgval.o |
|- .0. = ( 0g ` G ) |
4 |
|
mulgval.i |
|- I = ( invg ` G ) |
5 |
|
mulgval.t |
|- .x. = ( .g ` G ) |
6 |
|
eqidd |
|- ( w = G -> ZZ = ZZ ) |
7 |
|
fveq2 |
|- ( w = G -> ( Base ` w ) = ( Base ` G ) ) |
8 |
7 1
|
eqtr4di |
|- ( w = G -> ( Base ` w ) = B ) |
9 |
|
fveq2 |
|- ( w = G -> ( 0g ` w ) = ( 0g ` G ) ) |
10 |
9 3
|
eqtr4di |
|- ( w = G -> ( 0g ` w ) = .0. ) |
11 |
|
seqex |
|- seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) e. _V |
12 |
11
|
a1i |
|- ( w = G -> seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) e. _V ) |
13 |
|
id |
|- ( s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) -> s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) |
14 |
|
fveq2 |
|- ( w = G -> ( +g ` w ) = ( +g ` G ) ) |
15 |
14 2
|
eqtr4di |
|- ( w = G -> ( +g ` w ) = .+ ) |
16 |
15
|
seqeq2d |
|- ( w = G -> seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) = seq 1 ( .+ , ( NN X. { x } ) ) ) |
17 |
13 16
|
sylan9eqr |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> s = seq 1 ( .+ , ( NN X. { x } ) ) ) |
18 |
17
|
fveq1d |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( s ` n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) ) |
19 |
|
simpl |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> w = G ) |
20 |
19
|
fveq2d |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( invg ` w ) = ( invg ` G ) ) |
21 |
20 4
|
eqtr4di |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( invg ` w ) = I ) |
22 |
17
|
fveq1d |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( s ` -u n ) = ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) |
23 |
21 22
|
fveq12d |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> ( ( invg ` w ) ` ( s ` -u n ) ) = ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) |
24 |
18 23
|
ifeq12d |
|- ( ( w = G /\ s = seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) ) -> if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) = if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) |
25 |
12 24
|
csbied |
|- ( w = G -> [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) = if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) |
26 |
10 25
|
ifeq12d |
|- ( w = G -> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) = if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
27 |
6 8 26
|
mpoeq123dv |
|- ( w = G -> ( n e. ZZ , x e. ( Base ` w ) |-> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
28 |
|
df-mulg |
|- .g = ( w e. _V |-> ( n e. ZZ , x e. ( Base ` w ) |-> if ( n = 0 , ( 0g ` w ) , [_ seq 1 ( ( +g ` w ) , ( NN X. { x } ) ) / s ]_ if ( 0 < n , ( s ` n ) , ( ( invg ` w ) ` ( s ` -u n ) ) ) ) ) ) |
29 |
|
zex |
|- ZZ e. _V |
30 |
1
|
fvexi |
|- B e. _V |
31 |
29 30
|
mpoex |
|- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) e. _V |
32 |
27 28 31
|
fvmpt |
|- ( G e. _V -> ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
33 |
|
fvprc |
|- ( -. G e. _V -> ( .g ` G ) = (/) ) |
34 |
|
eqid |
|- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
35 |
3
|
fvexi |
|- .0. e. _V |
36 |
|
fvex |
|- ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) e. _V |
37 |
|
fvex |
|- ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) e. _V |
38 |
36 37
|
ifex |
|- if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) e. _V |
39 |
35 38
|
ifex |
|- if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) e. _V |
40 |
34 39
|
fnmpoi |
|- ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn ( ZZ X. B ) |
41 |
|
fvprc |
|- ( -. G e. _V -> ( Base ` G ) = (/) ) |
42 |
1 41
|
eqtrid |
|- ( -. G e. _V -> B = (/) ) |
43 |
42
|
xpeq2d |
|- ( -. G e. _V -> ( ZZ X. B ) = ( ZZ X. (/) ) ) |
44 |
|
xp0 |
|- ( ZZ X. (/) ) = (/) |
45 |
43 44
|
eqtrdi |
|- ( -. G e. _V -> ( ZZ X. B ) = (/) ) |
46 |
45
|
fneq2d |
|- ( -. G e. _V -> ( ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn ( ZZ X. B ) <-> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) ) ) |
47 |
40 46
|
mpbii |
|- ( -. G e. _V -> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) ) |
48 |
|
fn0 |
|- ( ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) Fn (/) <-> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = (/) ) |
49 |
47 48
|
sylib |
|- ( -. G e. _V -> ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) = (/) ) |
50 |
33 49
|
eqtr4d |
|- ( -. G e. _V -> ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) ) |
51 |
32 50
|
pm2.61i |
|- ( .g ` G ) = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
52 |
5 51
|
eqtri |
|- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |