| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsasslem.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | mulsasslem.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | mulsasslem.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 |  | lltropt |  |-  ( _Left ` A ) < | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( _Left ` A ) < | 
						
							| 6 | 2 3 | mulscut2 |  |-  ( ph -> ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) < | 
						
							| 7 |  | lrcut |  |-  ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) | 
						
							| 10 |  | mulsval2 |  |-  ( ( B e. No /\ C e. No ) -> ( B x.s C ) = ( ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) |s ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) ) ) | 
						
							| 11 | 2 3 10 | syl2anc |  |-  ( ph -> ( B x.s C ) = ( ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) |s ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) ) ) | 
						
							| 12 | 5 6 9 11 | mulsunif |  |-  ( ph -> ( A x.s ( B x.s C ) ) = ( ( { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } u. { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } ) |s ( { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } u. { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } ) ) ) | 
						
							| 13 |  | unab |  |-  ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) } | 
						
							| 14 |  | r19.43 |  |-  ( E. xL e. ( _Left ` A ) ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) ) | 
						
							| 15 |  | rexun |  |-  ( E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 16 |  | eqeq1 |  |-  ( b = t -> ( b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) <-> t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) | 
						
							| 17 | 16 | 2rexbidv |  |-  ( b = t -> ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) | 
						
							| 18 | 17 | rexab |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 19 |  | rexcom4 |  |-  ( E. yL e. ( _Left ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 20 |  | rexcom4 |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 21 |  | ovex |  |-  ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) e. _V | 
						
							| 22 |  | oveq2 |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( A x.s t ) = ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( xL x.s t ) = ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) | 
						
							| 25 | 23 24 | oveq12d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) ) | 
						
							| 27 | 21 26 | ceqsexv |  |-  ( E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 28 | 27 | rexbii |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 29 | 20 28 | bitr3i |  |-  ( E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 30 | 29 | rexbii |  |-  ( E. yL e. ( _Left ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 31 |  | r19.41vv |  |-  ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 32 | 31 | exbii |  |-  ( E. t E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 33 | 19 30 32 | 3bitr3ri |  |-  ( E. t ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 34 | 18 33 | bitri |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 35 |  | eqeq1 |  |-  ( b = t -> ( b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) <-> t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) | 
						
							| 36 | 35 | 2rexbidv |  |-  ( b = t -> ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) | 
						
							| 37 | 36 | rexab |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 38 |  | rexcom4 |  |-  ( E. yR e. ( _Right ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 39 |  | rexcom4 |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 40 |  | ovex |  |-  ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) e. _V | 
						
							| 41 |  | oveq2 |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( A x.s t ) = ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 43 |  | oveq2 |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( xL x.s t ) = ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) | 
						
							| 44 | 42 43 | oveq12d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 45 | 44 | eqeq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) ) | 
						
							| 46 | 40 45 | ceqsexv |  |-  ( E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 47 | 46 | rexbii |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 48 | 39 47 | bitr3i |  |-  ( E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 49 | 48 | rexbii |  |-  ( E. yR e. ( _Right ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 50 |  | r19.41vv |  |-  ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 51 | 50 | exbii |  |-  ( E. t E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 52 | 38 49 51 | 3bitr3ri |  |-  ( E. t ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 53 | 37 52 | bitri |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 54 | 34 53 | orbi12i |  |-  ( ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) ) | 
						
							| 55 | 15 54 | bitr2i |  |-  ( ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) | 
						
							| 56 | 55 | rexbii |  |-  ( E. xL e. ( _Left ` A ) ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) | 
						
							| 57 | 14 56 | bitr3i |  |-  ( ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) | 
						
							| 58 | 57 | abbii |  |-  { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) } = { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } | 
						
							| 59 | 13 58 | eqtri |  |-  ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) = { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } | 
						
							| 60 |  | unab |  |-  ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) = { a | ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) } | 
						
							| 61 |  | r19.43 |  |-  ( E. xR e. ( _Right ` A ) ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) ) | 
						
							| 62 |  | rexun |  |-  ( E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 63 |  | eqeq1 |  |-  ( b = t -> ( b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) <-> t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) | 
						
							| 64 | 63 | 2rexbidv |  |-  ( b = t -> ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) | 
						
							| 65 | 64 | rexab |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 66 |  | rexcom4 |  |-  ( E. yL e. ( _Left ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 67 |  | rexcom4 |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 68 |  | ovex |  |-  ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) e. _V | 
						
							| 69 |  | oveq2 |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( A x.s t ) = ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 71 |  | oveq2 |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( xR x.s t ) = ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) | 
						
							| 72 | 70 71 | oveq12d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 73 | 72 | eqeq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) ) | 
						
							| 74 | 68 73 | ceqsexv |  |-  ( E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 75 | 74 | rexbii |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 76 | 67 75 | bitr3i |  |-  ( E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 77 | 76 | rexbii |  |-  ( E. yL e. ( _Left ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 78 |  | r19.41vv |  |-  ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 79 | 78 | exbii |  |-  ( E. t E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 80 | 66 77 79 | 3bitr3ri |  |-  ( E. t ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 81 | 65 80 | bitri |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 82 |  | eqeq1 |  |-  ( b = t -> ( b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) <-> t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) | 
						
							| 83 | 82 | 2rexbidv |  |-  ( b = t -> ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) | 
						
							| 84 | 83 | rexab |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 85 |  | rexcom4 |  |-  ( E. yR e. ( _Right ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 86 |  | rexcom4 |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 87 |  | ovex |  |-  ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) e. _V | 
						
							| 88 |  | oveq2 |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( A x.s t ) = ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 90 |  | oveq2 |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( xR x.s t ) = ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) | 
						
							| 91 | 89 90 | oveq12d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 92 | 91 | eqeq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) ) | 
						
							| 93 | 87 92 | ceqsexv |  |-  ( E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 94 | 93 | rexbii |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 95 | 86 94 | bitr3i |  |-  ( E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 96 | 95 | rexbii |  |-  ( E. yR e. ( _Right ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 97 |  | r19.41vv |  |-  ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 98 | 97 | exbii |  |-  ( E. t E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 99 | 85 96 98 | 3bitr3ri |  |-  ( E. t ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 100 | 84 99 | bitri |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 101 | 81 100 | orbi12i |  |-  ( ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) ) | 
						
							| 102 | 62 101 | bitr2i |  |-  ( ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) | 
						
							| 103 | 102 | rexbii |  |-  ( E. xR e. ( _Right ` A ) ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) | 
						
							| 104 | 61 103 | bitr3i |  |-  ( ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) | 
						
							| 105 | 104 | abbii |  |-  { a | ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) } = { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } | 
						
							| 106 | 60 105 | eqtri |  |-  ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) = { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } | 
						
							| 107 | 59 106 | uneq12i |  |-  ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) ) = ( { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } u. { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } ) | 
						
							| 108 |  | unab |  |-  ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) } | 
						
							| 109 |  | r19.43 |  |-  ( E. xL e. ( _Left ` A ) ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) ) | 
						
							| 110 |  | rexun |  |-  ( E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 111 | 64 | rexab |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 112 |  | rexcom4 |  |-  ( E. yL e. ( _Left ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 113 |  | rexcom4 |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 114 | 69 | oveq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 115 |  | oveq2 |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( xL x.s t ) = ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) | 
						
							| 116 | 114 115 | oveq12d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 117 | 116 | eqeq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) -> ( a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) ) | 
						
							| 118 | 68 117 | ceqsexv |  |-  ( E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 119 | 118 | rexbii |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 120 | 113 119 | bitr3i |  |-  ( E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 121 | 120 | rexbii |  |-  ( E. yL e. ( _Left ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 122 |  | r19.41vv |  |-  ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 123 | 122 | exbii |  |-  ( E. t E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 124 | 112 121 123 | 3bitr3ri |  |-  ( E. t ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 125 | 111 124 | bitri |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) ) | 
						
							| 126 | 83 | rexab |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 127 |  | rexcom4 |  |-  ( E. yR e. ( _Right ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 128 |  | rexcom4 |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 129 | 88 | oveq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 130 |  | oveq2 |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( xL x.s t ) = ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) | 
						
							| 131 | 129 130 | oveq12d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 132 | 131 | eqeq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) -> ( a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) ) | 
						
							| 133 | 87 132 | ceqsexv |  |-  ( E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 134 | 133 | rexbii |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 135 | 128 134 | bitr3i |  |-  ( E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 136 | 135 | rexbii |  |-  ( E. yR e. ( _Right ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 137 |  | r19.41vv |  |-  ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 138 | 137 | exbii |  |-  ( E. t E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) ) | 
						
							| 139 | 127 136 138 | 3bitr3ri |  |-  ( E. t ( E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) /\ a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 140 | 126 139 | bitri |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) <-> E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) | 
						
							| 141 | 125 140 | orbi12i |  |-  ( ( E. t e. { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) ) | 
						
							| 142 | 110 141 | bitr2i |  |-  ( ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) | 
						
							| 143 | 142 | rexbii |  |-  ( E. xL e. ( _Left ` A ) ( E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) | 
						
							| 144 | 109 143 | bitr3i |  |-  ( ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) <-> E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) ) | 
						
							| 145 | 144 | abbii |  |-  { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) \/ E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) ) } = { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } | 
						
							| 146 | 108 145 | eqtri |  |-  ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) = { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } | 
						
							| 147 |  | unab |  |-  ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) = { a | ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) } | 
						
							| 148 |  | r19.43 |  |-  ( E. xR e. ( _Right ` A ) ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) ) | 
						
							| 149 |  | rexun |  |-  ( E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 150 | 17 | rexab |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 151 |  | rexcom4 |  |-  ( E. yL e. ( _Left ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 152 |  | rexcom4 |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 153 | 22 | oveq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 154 |  | oveq2 |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( xR x.s t ) = ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) | 
						
							| 155 | 153 154 | oveq12d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 156 | 155 | eqeq2d |  |-  ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) -> ( a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) ) | 
						
							| 157 | 21 156 | ceqsexv |  |-  ( E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 158 | 157 | rexbii |  |-  ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 159 | 152 158 | bitr3i |  |-  ( E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 160 | 159 | rexbii |  |-  ( E. yL e. ( _Left ` B ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 161 |  | r19.41vv |  |-  ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 162 | 161 | exbii |  |-  ( E. t E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) ( t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 163 | 151 160 162 | 3bitr3ri |  |-  ( E. t ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) t = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 164 | 150 163 | bitri |  |-  ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) ) | 
						
							| 165 | 36 | rexab |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 166 |  | rexcom4 |  |-  ( E. yR e. ( _Right ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 167 |  | rexcom4 |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 168 | 41 | oveq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) = ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 169 |  | oveq2 |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( xR x.s t ) = ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) | 
						
							| 170 | 168 169 | oveq12d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 171 | 170 | eqeq2d |  |-  ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) -> ( a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) ) | 
						
							| 172 | 40 171 | ceqsexv |  |-  ( E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 173 | 172 | rexbii |  |-  ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 174 | 167 173 | bitr3i |  |-  ( E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 175 | 174 | rexbii |  |-  ( E. yR e. ( _Right ` B ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 176 |  | r19.41vv |  |-  ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 177 | 176 | exbii |  |-  ( E. t E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) ( t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. t ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) ) | 
						
							| 178 | 166 175 177 | 3bitr3ri |  |-  ( E. t ( E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) t = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) /\ a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 179 | 165 178 | bitri |  |-  ( E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) <-> E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) | 
						
							| 180 | 164 179 | orbi12i |  |-  ( ( E. t e. { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) \/ E. t e. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) <-> ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) ) | 
						
							| 181 | 149 180 | bitr2i |  |-  ( ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) | 
						
							| 182 | 181 | rexbii |  |-  ( E. xR e. ( _Right ` A ) ( E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) | 
						
							| 183 | 148 182 | bitr3i |  |-  ( ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) <-> E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) ) | 
						
							| 184 | 183 | abbii |  |-  { a | ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) ) } = { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } | 
						
							| 185 | 147 184 | eqtri |  |-  ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) = { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } | 
						
							| 186 | 146 185 | uneq12i |  |-  ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) ) = ( { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } u. { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } ) | 
						
							| 187 | 107 186 | oveq12i |  |-  ( ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) ) |s ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) ) ) = ( ( { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } u. { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } ) |s ( { a | E. xL e. ( _Left ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) } u. { b | E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) } ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xL x.s t ) ) } u. { a | E. xR e. ( _Right ` A ) E. t e. ( { b | E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) b = ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) } u. { b | E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) b = ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) } ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s t ) ) -s ( xR x.s t ) ) } ) ) | 
						
							| 188 | 12 187 | eqtr4di |  |-  ( ph -> ( A x.s ( B x.s C ) ) = ( ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) ) |s ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) -s ( xL x.s ( ( ( yL x.s C ) +s ( B x.s zR ) ) -s ( yL x.s zR ) ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) -s ( xL x.s ( ( ( yR x.s C ) +s ( B x.s zL ) ) -s ( yR x.s zL ) ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) -s ( xR x.s ( ( ( yL x.s C ) +s ( B x.s zL ) ) -s ( yL x.s zL ) ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B x.s C ) ) +s ( A x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) -s ( xR x.s ( ( ( yR x.s C ) +s ( B x.s zR ) ) -s ( yR x.s zR ) ) ) ) } ) ) ) ) |