Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
2 |
|
mulsproplem2.1 |
|- ( ph -> X e. ( _Old ` ( bday ` A ) ) ) |
3 |
|
mulsproplem2.2 |
|- ( ph -> B e. No ) |
4 |
|
oldssno |
|- ( _Old ` ( bday ` A ) ) C_ No |
5 |
4 2
|
sselid |
|- ( ph -> X e. No ) |
6 |
|
0sno |
|- 0s e. No |
7 |
6
|
a1i |
|- ( ph -> 0s e. No ) |
8 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
9 |
8 8
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
10 |
|
0elon |
|- (/) e. On |
11 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
12 |
10 11
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
13 |
9 12
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
14 |
13 13
|
uneq12i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = ( (/) u. (/) ) |
15 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
16 |
14 15
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = (/) |
17 |
16 16
|
uneq12i |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = ( (/) u. (/) ) |
18 |
17 15
|
eqtri |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = (/) |
19 |
18
|
uneq2i |
|- ( ( ( bday ` X ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` B ) ) u. (/) ) |
20 |
|
un0 |
|- ( ( ( bday ` X ) +no ( bday ` B ) ) u. (/) ) = ( ( bday ` X ) +no ( bday ` B ) ) |
21 |
19 20
|
eqtri |
|- ( ( ( bday ` X ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` X ) +no ( bday ` B ) ) |
22 |
|
oldbdayim |
|- ( X e. ( _Old ` ( bday ` A ) ) -> ( bday ` X ) e. ( bday ` A ) ) |
23 |
2 22
|
syl |
|- ( ph -> ( bday ` X ) e. ( bday ` A ) ) |
24 |
|
bdayelon |
|- ( bday ` X ) e. On |
25 |
|
bdayelon |
|- ( bday ` A ) e. On |
26 |
|
bdayelon |
|- ( bday ` B ) e. On |
27 |
|
naddel1 |
|- ( ( ( bday ` X ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` X ) e. ( bday ` A ) <-> ( ( bday ` X ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
28 |
24 25 26 27
|
mp3an |
|- ( ( bday ` X ) e. ( bday ` A ) <-> ( ( bday ` X ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
29 |
23 28
|
sylib |
|- ( ph -> ( ( bday ` X ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
30 |
|
elun1 |
|- ( ( ( bday ` X ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( bday ` X ) +no ( bday ` B ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
31 |
29 30
|
syl |
|- ( ph -> ( ( bday ` X ) +no ( bday ` B ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
32 |
21 31
|
eqeltrid |
|- ( ph -> ( ( ( bday ` X ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
33 |
1 5 3 7 7 7 7 32
|
mulsproplem1 |
|- ( ph -> ( ( X x.s B ) e. No /\ ( ( 0s ( ( 0s x.s 0s ) -s ( 0s x.s 0s ) ) |
34 |
33
|
simpld |
|- ( ph -> ( X x.s B ) e. No ) |