| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvth.a |
|- ( ph -> A e. RR ) |
| 2 |
|
mvth.b |
|- ( ph -> B e. RR ) |
| 3 |
|
mvth.lt |
|- ( ph -> A < B ) |
| 4 |
|
mvth.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
mvth.d |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 6 |
|
mptresid |
|- ( _I |` ( A [,] B ) ) = ( z e. ( A [,] B ) |-> z ) |
| 7 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 9 |
|
ax-resscn |
|- RR C_ CC |
| 10 |
|
cncfmptid |
|- ( ( ( A [,] B ) C_ RR /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> z ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 11 |
8 9 10
|
sylancl |
|- ( ph -> ( z e. ( A [,] B ) |-> z ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 12 |
6 11
|
eqeltrid |
|- ( ph -> ( _I |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 13 |
6
|
eqcomi |
|- ( z e. ( A [,] B ) |-> z ) = ( _I |` ( A [,] B ) ) |
| 14 |
13
|
oveq2i |
|- ( RR _D ( z e. ( A [,] B ) |-> z ) ) = ( RR _D ( _I |` ( A [,] B ) ) ) |
| 15 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 16 |
15
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 17 |
|
simpr |
|- ( ( ph /\ z e. RR ) -> z e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ph /\ z e. RR ) -> z e. CC ) |
| 19 |
|
1red |
|- ( ( ph /\ z e. RR ) -> 1 e. RR ) |
| 20 |
16
|
dvmptid |
|- ( ph -> ( RR _D ( z e. RR |-> z ) ) = ( z e. RR |-> 1 ) ) |
| 21 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 22 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 23 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 24 |
1 2 23
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 25 |
16 18 19 20 8 21 22 24
|
dvmptres2 |
|- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> z ) ) = ( z e. ( A (,) B ) |-> 1 ) ) |
| 26 |
14 25
|
eqtr3id |
|- ( ph -> ( RR _D ( _I |` ( A [,] B ) ) ) = ( z e. ( A (,) B ) |-> 1 ) ) |
| 27 |
26
|
dmeqd |
|- ( ph -> dom ( RR _D ( _I |` ( A [,] B ) ) ) = dom ( z e. ( A (,) B ) |-> 1 ) ) |
| 28 |
|
1ex |
|- 1 e. _V |
| 29 |
|
eqid |
|- ( z e. ( A (,) B ) |-> 1 ) = ( z e. ( A (,) B ) |-> 1 ) |
| 30 |
28 29
|
dmmpti |
|- dom ( z e. ( A (,) B ) |-> 1 ) = ( A (,) B ) |
| 31 |
27 30
|
eqtrdi |
|- ( ph -> dom ( RR _D ( _I |` ( A [,] B ) ) ) = ( A (,) B ) ) |
| 32 |
1 2 3 4 12 5 31
|
cmvth |
|- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| 33 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 34 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 35 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
| 36 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 37 |
33 34 35 36
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 38 |
|
fvresi |
|- ( B e. ( A [,] B ) -> ( ( _I |` ( A [,] B ) ) ` B ) = B ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( ( _I |` ( A [,] B ) ) ` B ) = B ) |
| 40 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 41 |
33 34 35 40
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 42 |
|
fvresi |
|- ( A e. ( A [,] B ) -> ( ( _I |` ( A [,] B ) ) ` A ) = A ) |
| 43 |
41 42
|
syl |
|- ( ph -> ( ( _I |` ( A [,] B ) ) ` A ) = A ) |
| 44 |
39 43
|
oveq12d |
|- ( ph -> ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) = ( B - A ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) = ( B - A ) ) |
| 46 |
45
|
oveq1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( B - A ) x. ( ( RR _D F ) ` x ) ) ) |
| 47 |
26
|
fveq1d |
|- ( ph -> ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) = ( ( z e. ( A (,) B ) |-> 1 ) ` x ) ) |
| 48 |
|
eqidd |
|- ( z = x -> 1 = 1 ) |
| 49 |
48 29 28
|
fvmpt3i |
|- ( x e. ( A (,) B ) -> ( ( z e. ( A (,) B ) |-> 1 ) ` x ) = 1 ) |
| 50 |
47 49
|
sylan9eq |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) = 1 ) |
| 51 |
50
|
oveq2d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. 1 ) ) |
| 52 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 53 |
4 52
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 54 |
53 37
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. RR ) |
| 55 |
53 41
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. RR ) |
| 56 |
54 55
|
resubcld |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 57 |
56
|
recnd |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 59 |
58
|
mulridd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. 1 ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 60 |
51 59
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 61 |
46 60
|
eqeq12d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) <-> ( ( B - A ) x. ( ( RR _D F ) ` x ) ) = ( ( F ` B ) - ( F ` A ) ) ) ) |
| 62 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 63 |
62
|
recnd |
|- ( ph -> ( B - A ) e. CC ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( B - A ) e. CC ) |
| 65 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 66 |
5
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 67 |
65 66
|
mpbii |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 68 |
67
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 69 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 70 |
3 69
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 71 |
70
|
gt0ne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( B - A ) =/= 0 ) |
| 73 |
58 64 68 72
|
divmuld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) = ( ( RR _D F ) ` x ) <-> ( ( B - A ) x. ( ( RR _D F ) ` x ) ) = ( ( F ` B ) - ( F ` A ) ) ) ) |
| 74 |
61 73
|
bitr4d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) <-> ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) = ( ( RR _D F ) ` x ) ) ) |
| 75 |
|
eqcom |
|- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) <-> ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) ) |
| 76 |
|
eqcom |
|- ( ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) <-> ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) = ( ( RR _D F ) ` x ) ) |
| 77 |
74 75 76
|
3bitr4g |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) <-> ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) ) |
| 78 |
77
|
rexbidva |
|- ( ph -> ( E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D ( _I |` ( A [,] B ) ) ) ` x ) ) = ( ( ( ( _I |` ( A [,] B ) ) ` B ) - ( ( _I |` ( A [,] B ) ) ` A ) ) x. ( ( RR _D F ) ` x ) ) <-> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) ) |
| 79 |
32 78
|
mpbid |
|- ( ph -> E. x e. ( A (,) B ) ( ( RR _D F ) ` x ) = ( ( ( F ` B ) - ( F ` A ) ) / ( B - A ) ) ) |