Step |
Hyp |
Ref |
Expression |
1 |
|
nelsubginvcld.g |
|- ( ph -> G e. Grp ) |
2 |
|
nelsubginvcld.s |
|- ( ph -> S e. ( SubGrp ` G ) ) |
3 |
|
nelsubginvcld.x |
|- ( ph -> X e. ( B \ S ) ) |
4 |
|
nelsubginvcld.b |
|- B = ( Base ` G ) |
5 |
|
nelsubginvcld.p |
|- N = ( invg ` G ) |
6 |
3
|
eldifad |
|- ( ph -> X e. B ) |
7 |
4 5
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
8 |
1 6 7
|
syl2anc |
|- ( ph -> ( N ` X ) e. B ) |
9 |
3
|
eldifbd |
|- ( ph -> -. X e. S ) |
10 |
4 5
|
grpinvinv |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
11 |
1 6 10
|
syl2anc |
|- ( ph -> ( N ` ( N ` X ) ) = X ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) = X ) |
13 |
5
|
subginvcl |
|- ( ( S e. ( SubGrp ` G ) /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S ) |
14 |
2 13
|
sylan |
|- ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S ) |
15 |
12 14
|
eqeltrrd |
|- ( ( ph /\ ( N ` X ) e. S ) -> X e. S ) |
16 |
9 15
|
mtand |
|- ( ph -> -. ( N ` X ) e. S ) |
17 |
8 16
|
eldifd |
|- ( ph -> ( N ` X ) e. ( B \ S ) ) |