Metamath Proof Explorer


Theorem nelsubginvcld

Description: The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g
|- ( ph -> G e. Grp )
nelsubginvcld.s
|- ( ph -> S e. ( SubGrp ` G ) )
nelsubginvcld.x
|- ( ph -> X e. ( B \ S ) )
nelsubginvcld.b
|- B = ( Base ` G )
nelsubginvcld.p
|- N = ( invg ` G )
Assertion nelsubginvcld
|- ( ph -> ( N ` X ) e. ( B \ S ) )

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g
 |-  ( ph -> G e. Grp )
2 nelsubginvcld.s
 |-  ( ph -> S e. ( SubGrp ` G ) )
3 nelsubginvcld.x
 |-  ( ph -> X e. ( B \ S ) )
4 nelsubginvcld.b
 |-  B = ( Base ` G )
5 nelsubginvcld.p
 |-  N = ( invg ` G )
6 3 eldifad
 |-  ( ph -> X e. B )
7 4 5 grpinvcl
 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B )
8 1 6 7 syl2anc
 |-  ( ph -> ( N ` X ) e. B )
9 3 eldifbd
 |-  ( ph -> -. X e. S )
10 4 5 grpinvinv
 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X )
11 1 6 10 syl2anc
 |-  ( ph -> ( N ` ( N ` X ) ) = X )
12 11 adantr
 |-  ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) = X )
13 5 subginvcl
 |-  ( ( S e. ( SubGrp ` G ) /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S )
14 2 13 sylan
 |-  ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S )
15 12 14 eqeltrrd
 |-  ( ( ph /\ ( N ` X ) e. S ) -> X e. S )
16 9 15 mtand
 |-  ( ph -> -. ( N ` X ) e. S )
17 8 16 eldifd
 |-  ( ph -> ( N ` X ) e. ( B \ S ) )