| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelsubginvcld.g |  |-  ( ph -> G e. Grp ) | 
						
							| 2 |  | nelsubginvcld.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | nelsubginvcld.x |  |-  ( ph -> X e. ( B \ S ) ) | 
						
							| 4 |  | nelsubginvcld.b |  |-  B = ( Base ` G ) | 
						
							| 5 |  | nelsubginvcld.p |  |-  N = ( invg ` G ) | 
						
							| 6 | 3 | eldifad |  |-  ( ph -> X e. B ) | 
						
							| 7 | 4 5 | grpinvcl |  |-  ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) | 
						
							| 8 | 1 6 7 | syl2anc |  |-  ( ph -> ( N ` X ) e. B ) | 
						
							| 9 | 3 | eldifbd |  |-  ( ph -> -. X e. S ) | 
						
							| 10 | 4 5 | grpinvinv |  |-  ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) | 
						
							| 11 | 1 6 10 | syl2anc |  |-  ( ph -> ( N ` ( N ` X ) ) = X ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) = X ) | 
						
							| 13 | 5 | subginvcl |  |-  ( ( S e. ( SubGrp ` G ) /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S ) | 
						
							| 14 | 2 13 | sylan |  |-  ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S ) | 
						
							| 15 | 12 14 | eqeltrrd |  |-  ( ( ph /\ ( N ` X ) e. S ) -> X e. S ) | 
						
							| 16 | 9 15 | mtand |  |-  ( ph -> -. ( N ` X ) e. S ) | 
						
							| 17 | 8 16 | eldifd |  |-  ( ph -> ( N ` X ) e. ( B \ S ) ) |