| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelsubginvcld.g |
|- ( ph -> G e. Grp ) |
| 2 |
|
nelsubginvcld.s |
|- ( ph -> S e. ( SubGrp ` G ) ) |
| 3 |
|
nelsubginvcld.x |
|- ( ph -> X e. ( B \ S ) ) |
| 4 |
|
nelsubginvcld.b |
|- B = ( Base ` G ) |
| 5 |
|
nelsubginvcld.p |
|- N = ( invg ` G ) |
| 6 |
3
|
eldifad |
|- ( ph -> X e. B ) |
| 7 |
4 5
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 8 |
1 6 7
|
syl2anc |
|- ( ph -> ( N ` X ) e. B ) |
| 9 |
3
|
eldifbd |
|- ( ph -> -. X e. S ) |
| 10 |
4 5
|
grpinvinv |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| 11 |
1 6 10
|
syl2anc |
|- ( ph -> ( N ` ( N ` X ) ) = X ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) = X ) |
| 13 |
5
|
subginvcl |
|- ( ( S e. ( SubGrp ` G ) /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S ) |
| 14 |
2 13
|
sylan |
|- ( ( ph /\ ( N ` X ) e. S ) -> ( N ` ( N ` X ) ) e. S ) |
| 15 |
12 14
|
eqeltrrd |
|- ( ( ph /\ ( N ` X ) e. S ) -> X e. S ) |
| 16 |
9 15
|
mtand |
|- ( ph -> -. ( N ` X ) e. S ) |
| 17 |
8 16
|
eldifd |
|- ( ph -> ( N ` X ) e. ( B \ S ) ) |