| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelsubginvcld.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 2 |  | nelsubginvcld.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | nelsubginvcld.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ∖  𝑆 ) ) | 
						
							| 4 |  | nelsubginvcld.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | nelsubginvcld.p | ⊢ 𝑁  =  ( invg ‘ 𝐺 ) | 
						
							| 6 | 3 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 | 4 5 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 8 | 1 6 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 9 | 3 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑆 ) | 
						
							| 10 | 4 5 | grpinvinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 11 | 1 6 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝑆 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 13 | 5 | subginvcl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝑆 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  ∈  𝑆 ) | 
						
							| 14 | 2 13 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝑆 )  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) )  ∈  𝑆 ) | 
						
							| 15 | 12 14 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑋 )  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 16 | 9 15 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝑁 ‘ 𝑋 )  ∈  𝑆 ) | 
						
							| 17 | 8 16 | eldifd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  ∈  ( 𝐵  ∖  𝑆 ) ) |