Metamath Proof Explorer


Theorem nelsubginvcld

Description: The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g ( 𝜑𝐺 ∈ Grp )
nelsubginvcld.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
nelsubginvcld.x ( 𝜑𝑋 ∈ ( 𝐵𝑆 ) )
nelsubginvcld.b 𝐵 = ( Base ‘ 𝐺 )
nelsubginvcld.p 𝑁 = ( invg𝐺 )
Assertion nelsubginvcld ( 𝜑 → ( 𝑁𝑋 ) ∈ ( 𝐵𝑆 ) )

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g ( 𝜑𝐺 ∈ Grp )
2 nelsubginvcld.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
3 nelsubginvcld.x ( 𝜑𝑋 ∈ ( 𝐵𝑆 ) )
4 nelsubginvcld.b 𝐵 = ( Base ‘ 𝐺 )
5 nelsubginvcld.p 𝑁 = ( invg𝐺 )
6 3 eldifad ( 𝜑𝑋𝐵 )
7 4 5 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ 𝐵 )
8 1 6 7 syl2anc ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝐵 )
9 3 eldifbd ( 𝜑 → ¬ 𝑋𝑆 )
10 4 5 grpinvinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
11 1 6 10 syl2anc ( 𝜑 → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
12 11 adantr ( ( 𝜑 ∧ ( 𝑁𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) = 𝑋 )
13 5 subginvcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑁𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) ∈ 𝑆 )
14 2 13 sylan ( ( 𝜑 ∧ ( 𝑁𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁𝑋 ) ) ∈ 𝑆 )
15 12 14 eqeltrrd ( ( 𝜑 ∧ ( 𝑁𝑋 ) ∈ 𝑆 ) → 𝑋𝑆 )
16 9 15 mtand ( 𝜑 → ¬ ( 𝑁𝑋 ) ∈ 𝑆 )
17 8 16 eldifd ( 𝜑 → ( 𝑁𝑋 ) ∈ ( 𝐵𝑆 ) )