Step |
Hyp |
Ref |
Expression |
1 |
|
nelsubginvcld.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
2 |
|
nelsubginvcld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
nelsubginvcld.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ 𝑆 ) ) |
4 |
|
nelsubginvcld.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
5 |
|
nelsubginvcld.p |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
6 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
4 5
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
8 |
1 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
9 |
3
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑆 ) |
10 |
4 5
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
11 |
1 6 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
13 |
5
|
subginvcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝑆 ) |
14 |
2 13
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝑆 ) |
15 |
12 14
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
16 |
9 15
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) |
17 |
8 16
|
eldifd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ 𝑆 ) ) |