| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nelsubginvcld.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 2 |
|
nelsubginvcld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 |
|
nelsubginvcld.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ 𝑆 ) ) |
| 4 |
|
nelsubginvcld.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 5 |
|
nelsubginvcld.p |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 6 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
4 5
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 |
1 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 |
3
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑆 ) |
| 10 |
4 5
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 11 |
1 6 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 13 |
5
|
subginvcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 14 |
2 13
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 15 |
12 14
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 16 |
9 15
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ 𝑋 ) ∈ 𝑆 ) |
| 17 |
8 16
|
eldifd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ ( 𝐵 ∖ 𝑆 ) ) |