Metamath Proof Explorer


Theorem nelsubginvcld

Description: The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g φ G Grp
nelsubginvcld.s φ S SubGrp G
nelsubginvcld.x φ X B S
nelsubginvcld.b B = Base G
nelsubginvcld.p N = inv g G
Assertion nelsubginvcld φ N X B S

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g φ G Grp
2 nelsubginvcld.s φ S SubGrp G
3 nelsubginvcld.x φ X B S
4 nelsubginvcld.b B = Base G
5 nelsubginvcld.p N = inv g G
6 3 eldifad φ X B
7 4 5 grpinvcl G Grp X B N X B
8 1 6 7 syl2anc φ N X B
9 3 eldifbd φ ¬ X S
10 4 5 grpinvinv G Grp X B N N X = X
11 1 6 10 syl2anc φ N N X = X
12 11 adantr φ N X S N N X = X
13 5 subginvcl S SubGrp G N X S N N X S
14 2 13 sylan φ N X S N N X S
15 12 14 eqeltrrd φ N X S X S
16 9 15 mtand φ ¬ N X S
17 8 16 eldifd φ N X B S