| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
| 2 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
| 3 |
|
sqgcd |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 4 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 5 |
|
abssq |
|- ( B e. CC -> ( ( abs ` B ) ^ 2 ) = ( abs ` ( B ^ 2 ) ) ) |
| 6 |
4 5
|
syl |
|- ( B e. NN -> ( ( abs ` B ) ^ 2 ) = ( abs ` ( B ^ 2 ) ) ) |
| 7 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 8 |
|
gcd0id |
|- ( B e. ZZ -> ( 0 gcd B ) = ( abs ` B ) ) |
| 9 |
7 8
|
syl |
|- ( B e. NN -> ( 0 gcd B ) = ( abs ` B ) ) |
| 10 |
9
|
oveq1d |
|- ( B e. NN -> ( ( 0 gcd B ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) ) |
| 11 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 12 |
11
|
a1i |
|- ( B e. NN -> ( 0 ^ 2 ) = 0 ) |
| 13 |
12
|
oveq1d |
|- ( B e. NN -> ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) = ( 0 gcd ( B ^ 2 ) ) ) |
| 14 |
|
zsqcl |
|- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
| 15 |
|
gcd0id |
|- ( ( B ^ 2 ) e. ZZ -> ( 0 gcd ( B ^ 2 ) ) = ( abs ` ( B ^ 2 ) ) ) |
| 16 |
7 14 15
|
3syl |
|- ( B e. NN -> ( 0 gcd ( B ^ 2 ) ) = ( abs ` ( B ^ 2 ) ) ) |
| 17 |
13 16
|
eqtrd |
|- ( B e. NN -> ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) = ( abs ` ( B ^ 2 ) ) ) |
| 18 |
6 10 17
|
3eqtr4d |
|- ( B e. NN -> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 19 |
18
|
adantl |
|- ( ( A = 0 /\ B e. NN ) -> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 20 |
|
oveq1 |
|- ( A = 0 -> ( A gcd B ) = ( 0 gcd B ) ) |
| 21 |
20
|
oveq1d |
|- ( A = 0 -> ( ( A gcd B ) ^ 2 ) = ( ( 0 gcd B ) ^ 2 ) ) |
| 22 |
|
oveq1 |
|- ( A = 0 -> ( A ^ 2 ) = ( 0 ^ 2 ) ) |
| 23 |
22
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 24 |
21 23
|
eqeq12d |
|- ( A = 0 -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) ) |
| 25 |
24
|
adantr |
|- ( ( A = 0 /\ B e. NN ) -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( 0 gcd B ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( B ^ 2 ) ) ) ) |
| 26 |
19 25
|
mpbird |
|- ( ( A = 0 /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 27 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 28 |
|
abssq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( abs ` ( A ^ 2 ) ) ) |
| 29 |
27 28
|
syl |
|- ( A e. NN -> ( ( abs ` A ) ^ 2 ) = ( abs ` ( A ^ 2 ) ) ) |
| 30 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 31 |
|
gcdid0 |
|- ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) |
| 32 |
30 31
|
syl |
|- ( A e. NN -> ( A gcd 0 ) = ( abs ` A ) ) |
| 33 |
32
|
oveq1d |
|- ( A e. NN -> ( ( A gcd 0 ) ^ 2 ) = ( ( abs ` A ) ^ 2 ) ) |
| 34 |
11
|
a1i |
|- ( A e. NN -> ( 0 ^ 2 ) = 0 ) |
| 35 |
34
|
oveq2d |
|- ( A e. NN -> ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) = ( ( A ^ 2 ) gcd 0 ) ) |
| 36 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
| 37 |
|
gcdid0 |
|- ( ( A ^ 2 ) e. ZZ -> ( ( A ^ 2 ) gcd 0 ) = ( abs ` ( A ^ 2 ) ) ) |
| 38 |
30 36 37
|
3syl |
|- ( A e. NN -> ( ( A ^ 2 ) gcd 0 ) = ( abs ` ( A ^ 2 ) ) ) |
| 39 |
35 38
|
eqtrd |
|- ( A e. NN -> ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) = ( abs ` ( A ^ 2 ) ) ) |
| 40 |
29 33 39
|
3eqtr4d |
|- ( A e. NN -> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 41 |
40
|
adantr |
|- ( ( A e. NN /\ B = 0 ) -> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 42 |
|
oveq2 |
|- ( B = 0 -> ( A gcd B ) = ( A gcd 0 ) ) |
| 43 |
42
|
oveq1d |
|- ( B = 0 -> ( ( A gcd B ) ^ 2 ) = ( ( A gcd 0 ) ^ 2 ) ) |
| 44 |
|
oveq1 |
|- ( B = 0 -> ( B ^ 2 ) = ( 0 ^ 2 ) ) |
| 45 |
44
|
oveq2d |
|- ( B = 0 -> ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 46 |
43 45
|
eqeq12d |
|- ( B = 0 -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) ) |
| 47 |
46
|
adantl |
|- ( ( A e. NN /\ B = 0 ) -> ( ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) <-> ( ( A gcd 0 ) ^ 2 ) = ( ( A ^ 2 ) gcd ( 0 ^ 2 ) ) ) ) |
| 48 |
41 47
|
mpbird |
|- ( ( A e. NN /\ B = 0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 49 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
| 50 |
49
|
oveq1i |
|- ( ( 0 gcd 0 ) ^ 2 ) = ( 0 ^ 2 ) |
| 51 |
11 11
|
oveq12i |
|- ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) = ( 0 gcd 0 ) |
| 52 |
51 49
|
eqtri |
|- ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) = 0 |
| 53 |
11 50 52
|
3eqtr4i |
|- ( ( 0 gcd 0 ) ^ 2 ) = ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) |
| 54 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
| 55 |
54
|
oveq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( 0 gcd 0 ) ^ 2 ) ) |
| 56 |
22 44
|
oveqan12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = ( ( 0 ^ 2 ) gcd ( 0 ^ 2 ) ) ) |
| 57 |
53 55 56
|
3eqtr4a |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 58 |
3 26 48 57
|
ccase |
|- ( ( ( A e. NN \/ A = 0 ) /\ ( B e. NN \/ B = 0 ) ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 59 |
1 2 58
|
syl2anb |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |