| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( A. s e. ~P B ( I ` s ) C_ s -> A. s e. ~P B ( I ` s ) C_ s ) | 
						
							| 2 |  | fveq2 |  |-  ( s = t -> ( I ` s ) = ( I ` t ) ) | 
						
							| 3 |  | id |  |-  ( s = t -> s = t ) | 
						
							| 4 | 2 3 | sseq12d |  |-  ( s = t -> ( ( I ` s ) C_ s <-> ( I ` t ) C_ t ) ) | 
						
							| 5 | 4 | cbvralvw |  |-  ( A. s e. ~P B ( I ` s ) C_ s <-> A. t e. ~P B ( I ` t ) C_ t ) | 
						
							| 6 | 5 | biimpi |  |-  ( A. s e. ~P B ( I ` s ) C_ s -> A. t e. ~P B ( I ` t ) C_ t ) | 
						
							| 7 |  | raaanv |  |-  ( A. s e. ~P B A. t e. ~P B ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) <-> ( A. s e. ~P B ( I ` s ) C_ s /\ A. t e. ~P B ( I ` t ) C_ t ) ) | 
						
							| 8 | 1 6 7 | sylanbrc |  |-  ( A. s e. ~P B ( I ` s ) C_ s -> A. s e. ~P B A. t e. ~P B ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) ) | 
						
							| 9 |  | ss2in |  |-  ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) -> ( ( I ` s ) i^i ( I ` t ) ) C_ ( s i^i t ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( ( I ` s ) i^i ( I ` t ) ) C_ ( s i^i t ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( s i^i t ) = (/) ) | 
						
							| 12 | 10 11 | sseqtrd |  |-  ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( ( I ` s ) i^i ( I ` t ) ) C_ (/) ) | 
						
							| 13 |  | ss0 |  |-  ( ( ( I ` s ) i^i ( I ` t ) ) C_ (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) | 
						
							| 15 | 14 | ex |  |-  ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) -> ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) | 
						
							| 16 | 15 | 2ralimi |  |-  ( A. s e. ~P B A. t e. ~P B ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) -> A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) | 
						
							| 17 | 8 16 | syl |  |-  ( A. s e. ~P B ( I ` s ) C_ s -> A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) |