Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A. s e. ~P B ( I ` s ) C_ s -> A. s e. ~P B ( I ` s ) C_ s ) |
2 |
|
fveq2 |
|- ( s = t -> ( I ` s ) = ( I ` t ) ) |
3 |
|
id |
|- ( s = t -> s = t ) |
4 |
2 3
|
sseq12d |
|- ( s = t -> ( ( I ` s ) C_ s <-> ( I ` t ) C_ t ) ) |
5 |
4
|
cbvralvw |
|- ( A. s e. ~P B ( I ` s ) C_ s <-> A. t e. ~P B ( I ` t ) C_ t ) |
6 |
5
|
biimpi |
|- ( A. s e. ~P B ( I ` s ) C_ s -> A. t e. ~P B ( I ` t ) C_ t ) |
7 |
|
raaanv |
|- ( A. s e. ~P B A. t e. ~P B ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) <-> ( A. s e. ~P B ( I ` s ) C_ s /\ A. t e. ~P B ( I ` t ) C_ t ) ) |
8 |
1 6 7
|
sylanbrc |
|- ( A. s e. ~P B ( I ` s ) C_ s -> A. s e. ~P B A. t e. ~P B ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) ) |
9 |
|
ss2in |
|- ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) -> ( ( I ` s ) i^i ( I ` t ) ) C_ ( s i^i t ) ) |
10 |
9
|
adantr |
|- ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( ( I ` s ) i^i ( I ` t ) ) C_ ( s i^i t ) ) |
11 |
|
simpr |
|- ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( s i^i t ) = (/) ) |
12 |
10 11
|
sseqtrd |
|- ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( ( I ` s ) i^i ( I ` t ) ) C_ (/) ) |
13 |
|
ss0 |
|- ( ( ( I ` s ) i^i ( I ` t ) ) C_ (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) |
14 |
12 13
|
syl |
|- ( ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) /\ ( s i^i t ) = (/) ) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) |
15 |
14
|
ex |
|- ( ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) -> ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) |
16 |
15
|
2ralimi |
|- ( A. s e. ~P B A. t e. ~P B ( ( I ` s ) C_ s /\ ( I ` t ) C_ t ) -> A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) |
17 |
8 16
|
syl |
|- ( A. s e. ~P B ( I ` s ) C_ s -> A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) |