| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ) |
| 2 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑡 ) ) |
| 3 |
|
id |
⊢ ( 𝑠 = 𝑡 → 𝑠 = 𝑡 ) |
| 4 |
2 3
|
sseq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
| 5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) |
| 6 |
5
|
biimpi |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) |
| 7 |
|
raaanv |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
| 8 |
1 6 7
|
sylanbrc |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
| 9 |
|
ss2in |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝑠 ∩ 𝑡 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝑠 ∩ 𝑡 ) ) |
| 11 |
|
simpr |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( 𝑠 ∩ 𝑡 ) = ∅ ) |
| 12 |
10 11
|
sseqtrd |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ∅ ) |
| 13 |
|
ss0 |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) |
| 15 |
14
|
ex |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) → ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |
| 16 |
15
|
2ralimi |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |
| 17 |
8 16
|
syl |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |