Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ) |
2 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑡 ) ) |
3 |
|
id |
⊢ ( 𝑠 = 𝑡 → 𝑠 = 𝑡 ) |
4 |
2 3
|
sseq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
5 |
4
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) |
6 |
5
|
biimpi |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) |
7 |
|
raaanv |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
8 |
1 6 7
|
sylanbrc |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
9 |
|
ss2in |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝑠 ∩ 𝑡 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝑠 ∩ 𝑡 ) ) |
11 |
|
simpr |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( 𝑠 ∩ 𝑡 ) = ∅ ) |
12 |
10 11
|
sseqtrd |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ∅ ) |
13 |
|
ss0 |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ∧ ( 𝑠 ∩ 𝑡 ) = ∅ ) → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) |
15 |
14
|
ex |
⊢ ( ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) → ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |
16 |
15
|
2ralimi |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ∧ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |
17 |
8 16
|
syl |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |