| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  →  ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝐼 ‘ 𝑠 )  =  ( 𝐼 ‘ 𝑡 ) ) | 
						
							| 3 |  | id | ⊢ ( 𝑠  =  𝑡  →  𝑠  =  𝑡 ) | 
						
							| 4 | 2 3 | sseq12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 ) ) | 
						
							| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 ) | 
						
							| 6 | 5 | biimpi | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  →  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 ) | 
						
							| 7 |  | raaanv | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  ↔  ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 ) ) | 
						
							| 8 | 1 6 7 | sylanbrc | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  →  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 ) ) | 
						
							| 9 |  | ss2in | ⊢ ( ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝑠  ∩  𝑡 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  ∧  ( 𝑠  ∩  𝑡 )  =  ∅ )  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ( 𝑠  ∩  𝑡 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  ∧  ( 𝑠  ∩  𝑡 )  =  ∅ )  →  ( 𝑠  ∩  𝑡 )  =  ∅ ) | 
						
							| 12 | 10 11 | sseqtrd | ⊢ ( ( ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  ∧  ( 𝑠  ∩  𝑡 )  =  ∅ )  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ∅ ) | 
						
							| 13 |  | ss0 | ⊢ ( ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ⊆  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  ∧  ( 𝑠  ∩  𝑡 )  =  ∅ )  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) | 
						
							| 15 | 14 | ex | ⊢ ( ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  →  ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) | 
						
							| 16 | 15 | 2ralimi | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  ∧  ( 𝐼 ‘ 𝑡 )  ⊆  𝑡 )  →  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) | 
						
							| 17 | 8 16 | syl | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ 𝑠 )  ⊆  𝑠  →  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) |