| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odinv.1 |
|- O = ( od ` G ) |
| 2 |
|
odinv.2 |
|- I = ( invg ` G ) |
| 3 |
|
odinv.3 |
|- X = ( Base ` G ) |
| 4 |
|
neg1z |
|- -u 1 e. ZZ |
| 5 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 6 |
3 1 5
|
odmulg |
|- ( ( G e. Grp /\ A e. X /\ -u 1 e. ZZ ) -> ( O ` A ) = ( ( -u 1 gcd ( O ` A ) ) x. ( O ` ( -u 1 ( .g ` G ) A ) ) ) ) |
| 7 |
4 6
|
mp3an3 |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = ( ( -u 1 gcd ( O ` A ) ) x. ( O ` ( -u 1 ( .g ` G ) A ) ) ) ) |
| 8 |
3 1
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
| 9 |
8
|
adantl |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. NN0 ) |
| 10 |
9
|
nn0zd |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. ZZ ) |
| 11 |
|
gcdcom |
|- ( ( -u 1 e. ZZ /\ ( O ` A ) e. ZZ ) -> ( -u 1 gcd ( O ` A ) ) = ( ( O ` A ) gcd -u 1 ) ) |
| 12 |
4 10 11
|
sylancr |
|- ( ( G e. Grp /\ A e. X ) -> ( -u 1 gcd ( O ` A ) ) = ( ( O ` A ) gcd -u 1 ) ) |
| 13 |
|
1z |
|- 1 e. ZZ |
| 14 |
|
gcdneg |
|- ( ( ( O ` A ) e. ZZ /\ 1 e. ZZ ) -> ( ( O ` A ) gcd -u 1 ) = ( ( O ` A ) gcd 1 ) ) |
| 15 |
10 13 14
|
sylancl |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) gcd -u 1 ) = ( ( O ` A ) gcd 1 ) ) |
| 16 |
|
gcd1 |
|- ( ( O ` A ) e. ZZ -> ( ( O ` A ) gcd 1 ) = 1 ) |
| 17 |
10 16
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) gcd 1 ) = 1 ) |
| 18 |
12 15 17
|
3eqtrd |
|- ( ( G e. Grp /\ A e. X ) -> ( -u 1 gcd ( O ` A ) ) = 1 ) |
| 19 |
3 5 2
|
mulgm1 |
|- ( ( G e. Grp /\ A e. X ) -> ( -u 1 ( .g ` G ) A ) = ( I ` A ) ) |
| 20 |
19
|
fveq2d |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` ( -u 1 ( .g ` G ) A ) ) = ( O ` ( I ` A ) ) ) |
| 21 |
18 20
|
oveq12d |
|- ( ( G e. Grp /\ A e. X ) -> ( ( -u 1 gcd ( O ` A ) ) x. ( O ` ( -u 1 ( .g ` G ) A ) ) ) = ( 1 x. ( O ` ( I ` A ) ) ) ) |
| 22 |
3 2
|
grpinvcl |
|- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) e. X ) |
| 23 |
3 1
|
odcl |
|- ( ( I ` A ) e. X -> ( O ` ( I ` A ) ) e. NN0 ) |
| 24 |
22 23
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` ( I ` A ) ) e. NN0 ) |
| 25 |
24
|
nn0cnd |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` ( I ` A ) ) e. CC ) |
| 26 |
25
|
mullidd |
|- ( ( G e. Grp /\ A e. X ) -> ( 1 x. ( O ` ( I ` A ) ) ) = ( O ` ( I ` A ) ) ) |
| 27 |
7 21 26
|
3eqtrrd |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` ( I ` A ) ) = ( O ` A ) ) |