Metamath Proof Explorer


Theorem odinv

Description: The order of the inverse of a group element. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses odinv.1 O = od G
odinv.2 I = inv g G
odinv.3 X = Base G
Assertion odinv G Grp A X O I A = O A

Proof

Step Hyp Ref Expression
1 odinv.1 O = od G
2 odinv.2 I = inv g G
3 odinv.3 X = Base G
4 neg1z 1
5 eqid G = G
6 3 1 5 odmulg G Grp A X 1 O A = -1 gcd O A O -1 G A
7 4 6 mp3an3 G Grp A X O A = -1 gcd O A O -1 G A
8 3 1 odcl A X O A 0
9 8 adantl G Grp A X O A 0
10 9 nn0zd G Grp A X O A
11 gcdcom 1 O A -1 gcd O A = O A gcd -1
12 4 10 11 sylancr G Grp A X -1 gcd O A = O A gcd -1
13 1z 1
14 gcdneg O A 1 O A gcd -1 = O A gcd 1
15 10 13 14 sylancl G Grp A X O A gcd -1 = O A gcd 1
16 gcd1 O A O A gcd 1 = 1
17 10 16 syl G Grp A X O A gcd 1 = 1
18 12 15 17 3eqtrd G Grp A X -1 gcd O A = 1
19 3 5 2 mulgm1 G Grp A X -1 G A = I A
20 19 fveq2d G Grp A X O -1 G A = O I A
21 18 20 oveq12d G Grp A X -1 gcd O A O -1 G A = 1 O I A
22 3 2 grpinvcl G Grp A X I A X
23 3 1 odcl I A X O I A 0
24 22 23 syl G Grp A X O I A 0
25 24 nn0cnd G Grp A X O I A
26 25 mulid2d G Grp A X 1 O I A = O I A
27 7 21 26 3eqtrrd G Grp A X O I A = O A