| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|- X = ( Base ` G ) |
| 2 |
|
odcl.2 |
|- O = ( od ` G ) |
| 3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
| 5 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> A e. X ) |
| 6 |
|
simprl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N =/= 0 ) |
| 7 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. ZZ ) |
| 8 |
7
|
zcnd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. CC ) |
| 9 |
|
abs00 |
|- ( N e. CC -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
| 10 |
9
|
necon3bbid |
|- ( N e. CC -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) |
| 11 |
8 10
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) |
| 12 |
6 11
|
mpbird |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> -. ( abs ` N ) = 0 ) |
| 13 |
|
nn0abscl |
|- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
| 14 |
7 13
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN0 ) |
| 15 |
|
elnn0 |
|- ( ( abs ` N ) e. NN0 <-> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
| 16 |
14 15
|
sylib |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
| 17 |
16
|
ord |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) e. NN -> ( abs ` N ) = 0 ) ) |
| 18 |
12 17
|
mt3d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN ) |
| 19 |
|
simprr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( N .x. A ) = .0. ) |
| 20 |
|
oveq1 |
|- ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = ( N .x. A ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( abs ` N ) = N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
| 22 |
19 21
|
syl5ibrcom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = .0. ) ) |
| 23 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> G e. Grp ) |
| 24 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 25 |
1 3 24
|
mulgneg |
|- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) |
| 26 |
23 7 5 25
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) |
| 27 |
19
|
fveq2d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` ( N .x. A ) ) = ( ( invg ` G ) ` .0. ) ) |
| 28 |
4 24
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 29 |
23 28
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 30 |
26 27 29
|
3eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = .0. ) |
| 31 |
|
oveq1 |
|- ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = ( -u N .x. A ) ) |
| 32 |
31
|
eqeq1d |
|- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( -u N .x. A ) = .0. ) ) |
| 33 |
30 32
|
syl5ibrcom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = .0. ) ) |
| 34 |
7
|
zred |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. RR ) |
| 35 |
34
|
absord |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 36 |
22 33 35
|
mpjaod |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) .x. A ) = .0. ) |
| 37 |
1 2 3 4
|
odlem2 |
|- ( ( A e. X /\ ( abs ` N ) e. NN /\ ( ( abs ` N ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) |
| 38 |
5 18 36 37
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) |
| 39 |
|
elfznn |
|- ( ( O ` A ) e. ( 1 ... ( abs ` N ) ) -> ( O ` A ) e. NN ) |
| 40 |
38 39
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. NN ) |