Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> A e. X ) |
6 |
|
simprl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N =/= 0 ) |
7 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. ZZ ) |
8 |
7
|
zcnd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. CC ) |
9 |
|
abs00 |
|- ( N e. CC -> ( ( abs ` N ) = 0 <-> N = 0 ) ) |
10 |
9
|
necon3bbid |
|- ( N e. CC -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) |
11 |
8 10
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) |
12 |
6 11
|
mpbird |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> -. ( abs ` N ) = 0 ) |
13 |
|
nn0abscl |
|- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
14 |
7 13
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN0 ) |
15 |
|
elnn0 |
|- ( ( abs ` N ) e. NN0 <-> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
16 |
14 15
|
sylib |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) |
17 |
16
|
ord |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) e. NN -> ( abs ` N ) = 0 ) ) |
18 |
12 17
|
mt3d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN ) |
19 |
|
simprr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( N .x. A ) = .0. ) |
20 |
|
oveq1 |
|- ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = ( N .x. A ) ) |
21 |
20
|
eqeq1d |
|- ( ( abs ` N ) = N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
22 |
19 21
|
syl5ibrcom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = .0. ) ) |
23 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> G e. Grp ) |
24 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
25 |
1 3 24
|
mulgneg |
|- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) |
26 |
23 7 5 25
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) |
27 |
19
|
fveq2d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` ( N .x. A ) ) = ( ( invg ` G ) ` .0. ) ) |
28 |
4 24
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
29 |
23 28
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` .0. ) = .0. ) |
30 |
26 27 29
|
3eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = .0. ) |
31 |
|
oveq1 |
|- ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = ( -u N .x. A ) ) |
32 |
31
|
eqeq1d |
|- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( -u N .x. A ) = .0. ) ) |
33 |
30 32
|
syl5ibrcom |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = .0. ) ) |
34 |
7
|
zred |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. RR ) |
35 |
34
|
absord |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
36 |
22 33 35
|
mpjaod |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) .x. A ) = .0. ) |
37 |
1 2 3 4
|
odlem2 |
|- ( ( A e. X /\ ( abs ` N ) e. NN /\ ( ( abs ` N ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) |
38 |
5 18 36 37
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) |
39 |
|
elfznn |
|- ( ( O ` A ) e. ( 1 ... ( abs ` N ) ) -> ( O ` A ) e. NN ) |
40 |
38 39
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. NN ) |