Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|
2 |
|
odcl.2 |
|
3 |
|
odid.3 |
|
4 |
|
odid.4 |
|
5 |
|
simpl2 |
|
6 |
|
simprl |
|
7 |
|
simpl3 |
|
8 |
7
|
zcnd |
|
9 |
|
abs00 |
|
10 |
9
|
necon3bbid |
|
11 |
8 10
|
syl |
|
12 |
6 11
|
mpbird |
|
13 |
|
nn0abscl |
|
14 |
7 13
|
syl |
|
15 |
|
elnn0 |
|
16 |
14 15
|
sylib |
|
17 |
16
|
ord |
|
18 |
12 17
|
mt3d |
|
19 |
|
simprr |
|
20 |
|
oveq1 |
|
21 |
20
|
eqeq1d |
|
22 |
19 21
|
syl5ibrcom |
|
23 |
|
simpl1 |
|
24 |
|
eqid |
|
25 |
1 3 24
|
mulgneg |
|
26 |
23 7 5 25
|
syl3anc |
|
27 |
19
|
fveq2d |
|
28 |
4 24
|
grpinvid |
|
29 |
23 28
|
syl |
|
30 |
26 27 29
|
3eqtrd |
|
31 |
|
oveq1 |
|
32 |
31
|
eqeq1d |
|
33 |
30 32
|
syl5ibrcom |
|
34 |
7
|
zred |
|
35 |
34
|
absord |
|
36 |
22 33 35
|
mpjaod |
|
37 |
1 2 3 4
|
odlem2 |
|
38 |
5 18 36 37
|
syl3anc |
|
39 |
|
elfznn |
|
40 |
38 39
|
syl |
|