Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|
2 |
|
odcl.2 |
|
3 |
|
odid.3 |
|
4 |
|
odid.4 |
|
5 |
|
simpl3 |
|
6 |
5
|
zred |
|
7 |
|
simpr |
|
8 |
7
|
nnrpd |
|
9 |
|
modval |
|
10 |
6 8 9
|
syl2anc |
|
11 |
10
|
oveq1d |
|
12 |
|
simpl1 |
|
13 |
7
|
nnzd |
|
14 |
6 7
|
nndivred |
|
15 |
14
|
flcld |
|
16 |
13 15
|
zmulcld |
|
17 |
|
simpl2 |
|
18 |
|
eqid |
|
19 |
1 3 18
|
mulgsubdir |
|
20 |
12 5 16 17 19
|
syl13anc |
|
21 |
|
nncn |
|
22 |
|
zcn |
|
23 |
|
mulcom |
|
24 |
21 22 23
|
syl2an |
|
25 |
7 15 24
|
syl2anc |
|
26 |
25
|
oveq1d |
|
27 |
1 3
|
mulgass |
|
28 |
12 15 13 17 27
|
syl13anc |
|
29 |
1 2 3 4
|
odid |
|
30 |
17 29
|
syl |
|
31 |
30
|
oveq2d |
|
32 |
1 3 4
|
mulgz |
|
33 |
12 15 32
|
syl2anc |
|
34 |
31 33
|
eqtrd |
|
35 |
26 28 34
|
3eqtrd |
|
36 |
35
|
oveq2d |
|
37 |
1 3
|
mulgcl |
|
38 |
12 5 17 37
|
syl3anc |
|
39 |
1 4 18
|
grpsubid1 |
|
40 |
12 38 39
|
syl2anc |
|
41 |
36 40
|
eqtrd |
|
42 |
11 20 41
|
3eqtrd |
|