Metamath Proof Explorer


Theorem odmod

Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 6-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion odmod GGrpAXNOANmodOA·˙A=N·˙A

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 simpl3 GGrpAXNOAN
6 5 zred GGrpAXNOAN
7 simpr GGrpAXNOAOA
8 7 nnrpd GGrpAXNOAOA+
9 modval NOA+NmodOA=NOANOA
10 6 8 9 syl2anc GGrpAXNOANmodOA=NOANOA
11 10 oveq1d GGrpAXNOANmodOA·˙A=NOANOA·˙A
12 simpl1 GGrpAXNOAGGrp
13 7 nnzd GGrpAXNOAOA
14 6 7 nndivred GGrpAXNOANOA
15 14 flcld GGrpAXNOANOA
16 13 15 zmulcld GGrpAXNOAOANOA
17 simpl2 GGrpAXNOAAX
18 eqid -G=-G
19 1 3 18 mulgsubdir GGrpNOANOAAXNOANOA·˙A=N·˙A-GOANOA·˙A
20 12 5 16 17 19 syl13anc GGrpAXNOANOANOA·˙A=N·˙A-GOANOA·˙A
21 nncn OAOA
22 zcn NOANOA
23 mulcom OANOAOANOA=NOAOA
24 21 22 23 syl2an OANOAOANOA=NOAOA
25 7 15 24 syl2anc GGrpAXNOAOANOA=NOAOA
26 25 oveq1d GGrpAXNOAOANOA·˙A=NOAOA·˙A
27 1 3 mulgass GGrpNOAOAAXNOAOA·˙A=NOA·˙OA·˙A
28 12 15 13 17 27 syl13anc GGrpAXNOANOAOA·˙A=NOA·˙OA·˙A
29 1 2 3 4 odid AXOA·˙A=0˙
30 17 29 syl GGrpAXNOAOA·˙A=0˙
31 30 oveq2d GGrpAXNOANOA·˙OA·˙A=NOA·˙0˙
32 1 3 4 mulgz GGrpNOANOA·˙0˙=0˙
33 12 15 32 syl2anc GGrpAXNOANOA·˙0˙=0˙
34 31 33 eqtrd GGrpAXNOANOA·˙OA·˙A=0˙
35 26 28 34 3eqtrd GGrpAXNOAOANOA·˙A=0˙
36 35 oveq2d GGrpAXNOAN·˙A-GOANOA·˙A=N·˙A-G0˙
37 1 3 mulgcl GGrpNAXN·˙AX
38 12 5 17 37 syl3anc GGrpAXNOAN·˙AX
39 1 4 18 grpsubid1 GGrpN·˙AXN·˙A-G0˙=N·˙A
40 12 38 39 syl2anc GGrpAXNOAN·˙A-G0˙=N·˙A
41 36 40 eqtrd GGrpAXNOAN·˙A-GOANOA·˙A=N·˙A
42 11 20 41 3eqtrd GGrpAXNOANmodOA·˙A=N·˙A