Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 6-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | odmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | simpl3 | |
|
6 | 5 | zred | |
7 | simpr | |
|
8 | 7 | nnrpd | |
9 | modval | |
|
10 | 6 8 9 | syl2anc | |
11 | 10 | oveq1d | |
12 | simpl1 | |
|
13 | 7 | nnzd | |
14 | 6 7 | nndivred | |
15 | 14 | flcld | |
16 | 13 15 | zmulcld | |
17 | simpl2 | |
|
18 | eqid | |
|
19 | 1 3 18 | mulgsubdir | |
20 | 12 5 16 17 19 | syl13anc | |
21 | nncn | |
|
22 | zcn | |
|
23 | mulcom | |
|
24 | 21 22 23 | syl2an | |
25 | 7 15 24 | syl2anc | |
26 | 25 | oveq1d | |
27 | 1 3 | mulgass | |
28 | 12 15 13 17 27 | syl13anc | |
29 | 1 2 3 4 | odid | |
30 | 17 29 | syl | |
31 | 30 | oveq2d | |
32 | 1 3 4 | mulgz | |
33 | 12 15 32 | syl2anc | |
34 | 31 33 | eqtrd | |
35 | 26 28 34 | 3eqtrd | |
36 | 35 | oveq2d | |
37 | 1 3 | mulgcl | |
38 | 12 5 17 37 | syl3anc | |
39 | 1 4 18 | grpsubid1 | |
40 | 12 38 39 | syl2anc | |
41 | 36 40 | eqtrd | |
42 | 11 20 41 | 3eqtrd | |