| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resiexg |
|- ( A e. On -> ( _I |` A ) e. _V ) |
| 2 |
|
isoid |
|- ( _I |` A ) Isom _E , _E ( A , A ) |
| 3 |
|
isoeq1 |
|- ( f = ( _I |` A ) -> ( f Isom _E , _E ( A , A ) <-> ( _I |` A ) Isom _E , _E ( A , A ) ) ) |
| 4 |
3
|
spcegv |
|- ( ( _I |` A ) e. _V -> ( ( _I |` A ) Isom _E , _E ( A , A ) -> E. f f Isom _E , _E ( A , A ) ) ) |
| 5 |
1 2 4
|
mpisyl |
|- ( A e. On -> E. f f Isom _E , _E ( A , A ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. On /\ B e. On ) -> E. f f Isom _E , _E ( A , A ) ) |
| 7 |
|
isoeq5 |
|- ( A = B -> ( f Isom _E , _E ( A , A ) <-> f Isom _E , _E ( A , B ) ) ) |
| 8 |
7
|
exbidv |
|- ( A = B -> ( E. f f Isom _E , _E ( A , A ) <-> E. f f Isom _E , _E ( A , B ) ) ) |
| 9 |
6 8
|
syl5ibcom |
|- ( ( A e. On /\ B e. On ) -> ( A = B -> E. f f Isom _E , _E ( A , B ) ) ) |
| 10 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 11 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 12 |
|
ordiso2 |
|- ( ( f Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A = B ) |
| 13 |
12
|
3coml |
|- ( ( Ord A /\ Ord B /\ f Isom _E , _E ( A , B ) ) -> A = B ) |
| 14 |
13
|
3expia |
|- ( ( Ord A /\ Ord B ) -> ( f Isom _E , _E ( A , B ) -> A = B ) ) |
| 15 |
10 11 14
|
syl2an |
|- ( ( A e. On /\ B e. On ) -> ( f Isom _E , _E ( A , B ) -> A = B ) ) |
| 16 |
15
|
exlimdv |
|- ( ( A e. On /\ B e. On ) -> ( E. f f Isom _E , _E ( A , B ) -> A = B ) ) |
| 17 |
9 16
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( A = B <-> E. f f Isom _E , _E ( A , B ) ) ) |