Metamath Proof Explorer


Theorem ordiso

Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009) (Proof shortened by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ordiso A On B On A = B f f Isom E , E A B

Proof

Step Hyp Ref Expression
1 resiexg A On I A V
2 isoid I A Isom E , E A A
3 isoeq1 f = I A f Isom E , E A A I A Isom E , E A A
4 3 spcegv I A V I A Isom E , E A A f f Isom E , E A A
5 1 2 4 mpisyl A On f f Isom E , E A A
6 5 adantr A On B On f f Isom E , E A A
7 isoeq5 A = B f Isom E , E A A f Isom E , E A B
8 7 exbidv A = B f f Isom E , E A A f f Isom E , E A B
9 6 8 syl5ibcom A On B On A = B f f Isom E , E A B
10 eloni A On Ord A
11 eloni B On Ord B
12 ordiso2 f Isom E , E A B Ord A Ord B A = B
13 12 3coml Ord A Ord B f Isom E , E A B A = B
14 13 3expia Ord A Ord B f Isom E , E A B A = B
15 10 11 14 syl2an A On B On f Isom E , E A B A = B
16 15 exlimdv A On B On f f Isom E , E A B A = B
17 9 16 impbid A On B On A = B f f Isom E , E A B