Metamath Proof Explorer


Theorem ordiso

Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009) (Proof shortened by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ordiso AOnBOnA=BffIsomE,EAB

Proof

Step Hyp Ref Expression
1 resiexg AOnIAV
2 isoid IAIsomE,EAA
3 isoeq1 f=IAfIsomE,EAAIAIsomE,EAA
4 3 spcegv IAVIAIsomE,EAAffIsomE,EAA
5 1 2 4 mpisyl AOnffIsomE,EAA
6 5 adantr AOnBOnffIsomE,EAA
7 isoeq5 A=BfIsomE,EAAfIsomE,EAB
8 7 exbidv A=BffIsomE,EAAffIsomE,EAB
9 6 8 syl5ibcom AOnBOnA=BffIsomE,EAB
10 eloni AOnOrdA
11 eloni BOnOrdB
12 ordiso2 fIsomE,EABOrdAOrdBA=B
13 12 3coml OrdAOrdBfIsomE,EABA=B
14 13 3expia OrdAOrdBfIsomE,EABA=B
15 10 11 14 syl2an AOnBOnfIsomE,EABA=B
16 15 exlimdv AOnBOnffIsomE,EABA=B
17 9 16 impbid AOnBOnA=BffIsomE,EAB