Step |
Hyp |
Ref |
Expression |
1 |
|
pjpm.v |
|- V = ( Base ` W ) |
2 |
|
pjpm.l |
|- L = ( LSubSp ` W ) |
3 |
|
pjpm.k |
|- K = ( proj ` W ) |
4 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
5 |
|
eqid |
|- ( proj1 ` W ) = ( proj1 ` W ) |
6 |
1 2 4 5 3
|
pjfval |
|- K = ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) |
7 |
|
inss1 |
|- ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) |
8 |
6 7
|
eqsstri |
|- K C_ ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) |
9 |
|
funmpt |
|- Fun ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) |
10 |
|
funss |
|- ( K C_ ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) -> ( Fun ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) -> Fun K ) ) |
11 |
8 9 10
|
mp2 |
|- Fun K |
12 |
|
eqid |
|- ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) = ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) |
13 |
|
ovexd |
|- ( x e. L -> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) e. _V ) |
14 |
12 13
|
fmpti |
|- ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) : L --> _V |
15 |
|
fssxp |
|- ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) : L --> _V -> ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) C_ ( L X. _V ) ) |
16 |
|
ssrin |
|- ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) C_ ( L X. _V ) -> ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) ) |
17 |
14 15 16
|
mp2b |
|- ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) |
18 |
6 17
|
eqsstri |
|- K C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) |
19 |
|
inxp |
|- ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) = ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) |
20 |
|
inv1 |
|- ( L i^i _V ) = L |
21 |
|
incom |
|- ( _V i^i ( V ^m V ) ) = ( ( V ^m V ) i^i _V ) |
22 |
|
inv1 |
|- ( ( V ^m V ) i^i _V ) = ( V ^m V ) |
23 |
21 22
|
eqtri |
|- ( _V i^i ( V ^m V ) ) = ( V ^m V ) |
24 |
20 23
|
xpeq12i |
|- ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) = ( L X. ( V ^m V ) ) |
25 |
19 24
|
eqtri |
|- ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) = ( L X. ( V ^m V ) ) |
26 |
18 25
|
sseqtri |
|- K C_ ( L X. ( V ^m V ) ) |
27 |
|
ovex |
|- ( V ^m V ) e. _V |
28 |
2
|
fvexi |
|- L e. _V |
29 |
27 28
|
elpm |
|- ( K e. ( ( V ^m V ) ^pm L ) <-> ( Fun K /\ K C_ ( L X. ( V ^m V ) ) ) ) |
30 |
11 26 29
|
mpbir2an |
|- K e. ( ( V ^m V ) ^pm L ) |