| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjpm.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | pjpm.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 |  | pjpm.k |  |-  K = ( proj ` W ) | 
						
							| 4 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 5 |  | eqid |  |-  ( proj1 ` W ) = ( proj1 ` W ) | 
						
							| 6 | 1 2 4 5 3 | pjfval |  |-  K = ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) | 
						
							| 7 |  | inss1 |  |-  ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) | 
						
							| 8 | 6 7 | eqsstri |  |-  K C_ ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) | 
						
							| 9 |  | funmpt |  |-  Fun ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) | 
						
							| 10 |  | funss |  |-  ( K C_ ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) -> ( Fun ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) -> Fun K ) ) | 
						
							| 11 | 8 9 10 | mp2 |  |-  Fun K | 
						
							| 12 |  | eqid |  |-  ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) = ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) | 
						
							| 13 |  | ovexd |  |-  ( x e. L -> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) e. _V ) | 
						
							| 14 | 12 13 | fmpti |  |-  ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) : L --> _V | 
						
							| 15 |  | fssxp |  |-  ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) : L --> _V -> ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) C_ ( L X. _V ) ) | 
						
							| 16 |  | ssrin |  |-  ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) C_ ( L X. _V ) -> ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) ) | 
						
							| 17 | 14 15 16 | mp2b |  |-  ( ( x e. L |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) | 
						
							| 18 | 6 17 | eqsstri |  |-  K C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) | 
						
							| 19 |  | inxp |  |-  ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) = ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) | 
						
							| 20 |  | inv1 |  |-  ( L i^i _V ) = L | 
						
							| 21 |  | incom |  |-  ( _V i^i ( V ^m V ) ) = ( ( V ^m V ) i^i _V ) | 
						
							| 22 |  | inv1 |  |-  ( ( V ^m V ) i^i _V ) = ( V ^m V ) | 
						
							| 23 | 21 22 | eqtri |  |-  ( _V i^i ( V ^m V ) ) = ( V ^m V ) | 
						
							| 24 | 20 23 | xpeq12i |  |-  ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) = ( L X. ( V ^m V ) ) | 
						
							| 25 | 19 24 | eqtri |  |-  ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) = ( L X. ( V ^m V ) ) | 
						
							| 26 | 18 25 | sseqtri |  |-  K C_ ( L X. ( V ^m V ) ) | 
						
							| 27 |  | ovex |  |-  ( V ^m V ) e. _V | 
						
							| 28 | 2 | fvexi |  |-  L e. _V | 
						
							| 29 | 27 28 | elpm |  |-  ( K e. ( ( V ^m V ) ^pm L ) <-> ( Fun K /\ K C_ ( L X. ( V ^m V ) ) ) ) | 
						
							| 30 | 11 26 29 | mpbir2an |  |-  K e. ( ( V ^m V ) ^pm L ) |