| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plycjlem.1 |
|- N = ( deg ` F ) |
| 2 |
|
plycjlem.2 |
|- G = ( ( * o. F ) o. * ) |
| 3 |
|
plycjlem.3 |
|- A = ( coeff ` F ) |
| 4 |
|
cjcl |
|- ( z e. CC -> ( * ` z ) e. CC ) |
| 5 |
4
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( * ` z ) e. CC ) |
| 6 |
|
cjf |
|- * : CC --> CC |
| 7 |
6
|
a1i |
|- ( F e. ( Poly ` S ) -> * : CC --> CC ) |
| 8 |
7
|
feqmptd |
|- ( F e. ( Poly ` S ) -> * = ( z e. CC |-> ( * ` z ) ) ) |
| 9 |
|
fzfid |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( 0 ... N ) e. Fin ) |
| 10 |
3
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
| 11 |
10
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> A : NN0 --> CC ) |
| 12 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 13 |
|
ffvelcdm |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
| 15 |
|
expcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
| 16 |
12 15
|
sylan2 |
|- ( ( x e. CC /\ k e. ( 0 ... N ) ) -> ( x ^ k ) e. CC ) |
| 17 |
16
|
adantll |
|- ( ( ( F e. ( Poly ` S ) /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( x ^ k ) e. CC ) |
| 18 |
14 17
|
mulcld |
|- ( ( ( F e. ( Poly ` S ) /\ x e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( x ^ k ) ) e. CC ) |
| 19 |
9 18
|
fsumcl |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) e. CC ) |
| 20 |
3 1
|
coeid |
|- ( F e. ( Poly ` S ) -> F = ( x e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) ) |
| 21 |
|
fveq2 |
|- ( z = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) -> ( * ` z ) = ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) ) |
| 22 |
19 20 8 21
|
fmptco |
|- ( F e. ( Poly ` S ) -> ( * o. F ) = ( x e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) ) ) |
| 23 |
|
oveq1 |
|- ( x = ( * ` z ) -> ( x ^ k ) = ( ( * ` z ) ^ k ) ) |
| 24 |
23
|
oveq2d |
|- ( x = ( * ` z ) -> ( ( A ` k ) x. ( x ^ k ) ) = ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) |
| 25 |
24
|
sumeq2sdv |
|- ( x = ( * ` z ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) |
| 26 |
25
|
fveq2d |
|- ( x = ( * ` z ) -> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( x ^ k ) ) ) = ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) |
| 27 |
5 8 22 26
|
fmptco |
|- ( F e. ( Poly ` S ) -> ( ( * o. F ) o. * ) = ( z e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) ) |
| 28 |
2 27
|
eqtrid |
|- ( F e. ( Poly ` S ) -> G = ( z e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) ) |
| 29 |
|
fzfid |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( 0 ... N ) e. Fin ) |
| 30 |
10
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> A : NN0 --> CC ) |
| 31 |
30 12 13
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) |
| 32 |
|
expcl |
|- ( ( ( * ` z ) e. CC /\ k e. NN0 ) -> ( ( * ` z ) ^ k ) e. CC ) |
| 33 |
5 12 32
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( * ` z ) ^ k ) e. CC ) |
| 34 |
31 33
|
mulcld |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) e. CC ) |
| 35 |
29 34
|
fsumcj |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) |
| 36 |
31 33
|
cjmuld |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = ( ( * ` ( A ` k ) ) x. ( * ` ( ( * ` z ) ^ k ) ) ) ) |
| 37 |
|
fvco3 |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( ( * o. A ) ` k ) = ( * ` ( A ` k ) ) ) |
| 38 |
30 12 37
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( * o. A ) ` k ) = ( * ` ( A ` k ) ) ) |
| 39 |
|
cjexp |
|- ( ( ( * ` z ) e. CC /\ k e. NN0 ) -> ( * ` ( ( * ` z ) ^ k ) ) = ( ( * ` ( * ` z ) ) ^ k ) ) |
| 40 |
5 12 39
|
syl2an |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( ( * ` z ) ^ k ) ) = ( ( * ` ( * ` z ) ) ^ k ) ) |
| 41 |
|
cjcj |
|- ( z e. CC -> ( * ` ( * ` z ) ) = z ) |
| 42 |
41
|
ad2antlr |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( * ` z ) ) = z ) |
| 43 |
42
|
oveq1d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( * ` ( * ` z ) ) ^ k ) = ( z ^ k ) ) |
| 44 |
40 43
|
eqtr2d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( z ^ k ) = ( * ` ( ( * ` z ) ^ k ) ) ) |
| 45 |
38 44
|
oveq12d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) = ( ( * ` ( A ` k ) ) x. ( * ` ( ( * ` z ) ^ k ) ) ) ) |
| 46 |
36 45
|
eqtr4d |
|- ( ( ( F e. ( Poly ` S ) /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) |
| 47 |
46
|
sumeq2dv |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( * ` ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) |
| 48 |
35 47
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ z e. CC ) -> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) |
| 49 |
48
|
mpteq2dva |
|- ( F e. ( Poly ` S ) -> ( z e. CC |-> ( * ` sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( ( * ` z ) ^ k ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) ) |
| 50 |
28 49
|
eqtrd |
|- ( F e. ( Poly ` S ) -> G = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( ( * o. A ) ` k ) x. ( z ^ k ) ) ) ) |