| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plycjlem.1 |
|
| 2 |
|
plycjlem.2 |
|
| 3 |
|
plycjlem.3 |
|
| 4 |
|
cjcl |
|
| 5 |
4
|
adantl |
|
| 6 |
|
cjf |
|
| 7 |
6
|
a1i |
|
| 8 |
7
|
feqmptd |
|
| 9 |
|
fzfid |
|
| 10 |
3
|
coef3 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
elfznn0 |
|
| 13 |
|
ffvelcdm |
|
| 14 |
11 12 13
|
syl2an |
|
| 15 |
|
expcl |
|
| 16 |
12 15
|
sylan2 |
|
| 17 |
16
|
adantll |
|
| 18 |
14 17
|
mulcld |
|
| 19 |
9 18
|
fsumcl |
|
| 20 |
3 1
|
coeid |
|
| 21 |
|
fveq2 |
|
| 22 |
19 20 8 21
|
fmptco |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
sumeq2sdv |
|
| 26 |
25
|
fveq2d |
|
| 27 |
5 8 22 26
|
fmptco |
|
| 28 |
2 27
|
eqtrid |
|
| 29 |
|
fzfid |
|
| 30 |
10
|
adantr |
|
| 31 |
30 12 13
|
syl2an |
|
| 32 |
|
expcl |
|
| 33 |
5 12 32
|
syl2an |
|
| 34 |
31 33
|
mulcld |
|
| 35 |
29 34
|
fsumcj |
|
| 36 |
31 33
|
cjmuld |
|
| 37 |
|
fvco3 |
|
| 38 |
30 12 37
|
syl2an |
|
| 39 |
|
cjexp |
|
| 40 |
5 12 39
|
syl2an |
|
| 41 |
|
cjcj |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
42
|
oveq1d |
|
| 44 |
40 43
|
eqtr2d |
|
| 45 |
38 44
|
oveq12d |
|
| 46 |
36 45
|
eqtr4d |
|
| 47 |
46
|
sumeq2dv |
|
| 48 |
35 47
|
eqtrd |
|
| 49 |
48
|
mpteq2dva |
|
| 50 |
28 49
|
eqtrd |
|