Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.2 |
|
2 |
|
plycj.3 |
|
3 |
|
plycj.4 |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 1 5
|
plycjlem |
|
7 |
3 6
|
syl |
|
8 |
|
plybss |
|
9 |
3 8
|
syl |
|
10 |
|
0cnd |
|
11 |
10
|
snssd |
|
12 |
9 11
|
unssd |
|
13 |
|
dgrcl |
|
14 |
3 13
|
syl |
|
15 |
5
|
coef |
|
16 |
3 15
|
syl |
|
17 |
|
elfznn0 |
|
18 |
|
fvco3 |
|
19 |
16 17 18
|
syl2an |
|
20 |
|
ffvelcdm |
|
21 |
16 17 20
|
syl2an |
|
22 |
2
|
ralrimiva |
|
23 |
|
fveq2 |
|
24 |
23
|
eleq1d |
|
25 |
24
|
rspccv |
|
26 |
22 25
|
syl |
|
27 |
|
elsni |
|
28 |
27
|
fveq2d |
|
29 |
|
cj0 |
|
30 |
28 29
|
eqtrdi |
|
31 |
|
fvex |
|
32 |
31
|
elsn |
|
33 |
30 32
|
sylibr |
|
34 |
33
|
a1i |
|
35 |
26 34
|
orim12d |
|
36 |
|
elun |
|
37 |
|
elun |
|
38 |
35 36 37
|
3imtr4g |
|
39 |
38
|
adantr |
|
40 |
21 39
|
mpd |
|
41 |
19 40
|
eqeltrd |
|
42 |
12 14 41
|
elplyd |
|
43 |
7 42
|
eqeltrd |
|
44 |
|
plyun0 |
|
45 |
43 44
|
eleqtrdi |
|