| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 2 |
1
|
ffvelcdmda |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( F ` x ) e. CC ) |
| 3 |
2
|
mul02d |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( 0 x. ( F ` x ) ) = 0 ) |
| 4 |
3
|
mpteq2dva |
|- ( F e. ( Poly ` S ) -> ( x e. CC |-> ( 0 x. ( F ` x ) ) ) = ( x e. CC |-> 0 ) ) |
| 5 |
|
c0ex |
|- 0 e. _V |
| 6 |
5
|
fconst |
|- ( CC X. { 0 } ) : CC --> { 0 } |
| 7 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 8 |
7
|
feq1i |
|- ( 0p : CC --> { 0 } <-> ( CC X. { 0 } ) : CC --> { 0 } ) |
| 9 |
6 8
|
mpbir |
|- 0p : CC --> { 0 } |
| 10 |
|
ffn |
|- ( 0p : CC --> { 0 } -> 0p Fn CC ) |
| 11 |
9 10
|
mp1i |
|- ( F e. ( Poly ` S ) -> 0p Fn CC ) |
| 12 |
1
|
ffnd |
|- ( F e. ( Poly ` S ) -> F Fn CC ) |
| 13 |
|
cnex |
|- CC e. _V |
| 14 |
13
|
a1i |
|- ( F e. ( Poly ` S ) -> CC e. _V ) |
| 15 |
|
inidm |
|- ( CC i^i CC ) = CC |
| 16 |
|
0pval |
|- ( x e. CC -> ( 0p ` x ) = 0 ) |
| 17 |
16
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( 0p ` x ) = 0 ) |
| 18 |
|
eqidd |
|- ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( F ` x ) = ( F ` x ) ) |
| 19 |
11 12 14 14 15 17 18
|
offval |
|- ( F e. ( Poly ` S ) -> ( 0p oF x. F ) = ( x e. CC |-> ( 0 x. ( F ` x ) ) ) ) |
| 20 |
|
fconstmpt |
|- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
| 21 |
7 20
|
eqtri |
|- 0p = ( x e. CC |-> 0 ) |
| 22 |
21
|
a1i |
|- ( F e. ( Poly ` S ) -> 0p = ( x e. CC |-> 0 ) ) |
| 23 |
4 19 22
|
3eqtr4d |
|- ( F e. ( Poly ` S ) -> ( 0p oF x. F ) = 0p ) |