| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyf |  |-  ( F e. ( Poly ` S ) -> F : CC --> CC ) | 
						
							| 2 | 1 | ffvelcdmda |  |-  ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( F ` x ) e. CC ) | 
						
							| 3 | 2 | mul02d |  |-  ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( 0 x. ( F ` x ) ) = 0 ) | 
						
							| 4 | 3 | mpteq2dva |  |-  ( F e. ( Poly ` S ) -> ( x e. CC |-> ( 0 x. ( F ` x ) ) ) = ( x e. CC |-> 0 ) ) | 
						
							| 5 |  | c0ex |  |-  0 e. _V | 
						
							| 6 | 5 | fconst |  |-  ( CC X. { 0 } ) : CC --> { 0 } | 
						
							| 7 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 8 | 7 | feq1i |  |-  ( 0p : CC --> { 0 } <-> ( CC X. { 0 } ) : CC --> { 0 } ) | 
						
							| 9 | 6 8 | mpbir |  |-  0p : CC --> { 0 } | 
						
							| 10 |  | ffn |  |-  ( 0p : CC --> { 0 } -> 0p Fn CC ) | 
						
							| 11 | 9 10 | mp1i |  |-  ( F e. ( Poly ` S ) -> 0p Fn CC ) | 
						
							| 12 | 1 | ffnd |  |-  ( F e. ( Poly ` S ) -> F Fn CC ) | 
						
							| 13 |  | cnex |  |-  CC e. _V | 
						
							| 14 | 13 | a1i |  |-  ( F e. ( Poly ` S ) -> CC e. _V ) | 
						
							| 15 |  | inidm |  |-  ( CC i^i CC ) = CC | 
						
							| 16 |  | 0pval |  |-  ( x e. CC -> ( 0p ` x ) = 0 ) | 
						
							| 17 | 16 | adantl |  |-  ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( 0p ` x ) = 0 ) | 
						
							| 18 |  | eqidd |  |-  ( ( F e. ( Poly ` S ) /\ x e. CC ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 19 | 11 12 14 14 15 17 18 | offval |  |-  ( F e. ( Poly ` S ) -> ( 0p oF x. F ) = ( x e. CC |-> ( 0 x. ( F ` x ) ) ) ) | 
						
							| 20 |  | fconstmpt |  |-  ( CC X. { 0 } ) = ( x e. CC |-> 0 ) | 
						
							| 21 | 7 20 | eqtri |  |-  0p = ( x e. CC |-> 0 ) | 
						
							| 22 | 21 | a1i |  |-  ( F e. ( Poly ` S ) -> 0p = ( x e. CC |-> 0 ) ) | 
						
							| 23 | 4 19 22 | 3eqtr4d |  |-  ( F e. ( Poly ` S ) -> ( 0p oF x. F ) = 0p ) |