| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> F e. ( Poly ` RR ) ) | 
						
							| 2 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 3 |  | 1re |  |-  1 e. RR | 
						
							| 4 |  | plyid |  |-  ( ( RR C_ CC /\ 1 e. RR ) -> Xp e. ( Poly ` RR ) ) | 
						
							| 5 | 2 3 4 | mp2an |  |-  Xp e. ( Poly ` RR ) | 
						
							| 6 | 5 | a1i |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> Xp e. ( Poly ` RR ) ) | 
						
							| 7 |  | simprl |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> x e. RR ) | 
						
							| 8 |  | simprr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> y e. RR ) | 
						
							| 9 | 7 8 | readdcld |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) | 
						
							| 10 | 7 8 | remulcld |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) | 
						
							| 11 | 1 6 9 10 | plymul |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( F oF x. Xp ) e. ( Poly ` RR ) ) | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 |  | eqid |  |-  ( coeff ` ( F oF x. Xp ) ) = ( coeff ` ( F oF x. Xp ) ) | 
						
							| 14 | 13 | coef2 |  |-  ( ( ( F oF x. Xp ) e. ( Poly ` RR ) /\ 0 e. RR ) -> ( coeff ` ( F oF x. Xp ) ) : NN0 --> RR ) | 
						
							| 15 | 11 12 14 | sylancl |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) : NN0 --> RR ) | 
						
							| 16 | 15 | feqmptd |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> ( ( coeff ` ( F oF x. Xp ) ) ` n ) ) ) | 
						
							| 17 |  | cnex |  |-  CC e. _V | 
						
							| 18 | 17 | a1i |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> CC e. _V ) | 
						
							| 19 |  | plyf |  |-  ( F e. ( Poly ` RR ) -> F : CC --> CC ) | 
						
							| 20 | 1 19 | syl |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> F : CC --> CC ) | 
						
							| 21 |  | plyf |  |-  ( Xp e. ( Poly ` RR ) -> Xp : CC --> CC ) | 
						
							| 22 | 5 21 | ax-mp |  |-  Xp : CC --> CC | 
						
							| 23 | 22 | a1i |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> Xp : CC --> CC ) | 
						
							| 24 |  | simprl |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. CC /\ y e. CC ) ) -> x e. CC ) | 
						
							| 25 |  | simprr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. CC /\ y e. CC ) ) -> y e. CC ) | 
						
							| 26 | 24 25 | mulcomd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 27 | 18 20 23 26 | caofcom |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( F oF x. Xp ) = ( Xp oF x. F ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( coeff ` ( Xp oF x. F ) ) ) | 
						
							| 29 | 28 | fveq1d |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( ( coeff ` ( F oF x. Xp ) ) ` n ) = ( ( coeff ` ( Xp oF x. F ) ) ` n ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( F oF x. Xp ) ) ` n ) = ( ( coeff ` ( Xp oF x. F ) ) ` n ) ) | 
						
							| 31 | 5 | a1i |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> Xp e. ( Poly ` RR ) ) | 
						
							| 32 | 1 | adantr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> F e. ( Poly ` RR ) ) | 
						
							| 33 |  | simpr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 34 |  | eqid |  |-  ( coeff ` Xp ) = ( coeff ` Xp ) | 
						
							| 35 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 36 | 34 35 | coemul |  |-  ( ( Xp e. ( Poly ` RR ) /\ F e. ( Poly ` RR ) /\ n e. NN0 ) -> ( ( coeff ` ( Xp oF x. F ) ) ` n ) = sum_ i e. ( 0 ... n ) ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) ) | 
						
							| 37 | 31 32 33 36 | syl3anc |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( Xp oF x. F ) ) ` n ) = sum_ i e. ( 0 ... n ) ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) ) | 
						
							| 38 |  | elfznn0 |  |-  ( i e. ( 0 ... n ) -> i e. NN0 ) | 
						
							| 39 |  | coeidp |  |-  ( i e. NN0 -> ( ( coeff ` Xp ) ` i ) = if ( i = 1 , 1 , 0 ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( i e. ( 0 ... n ) -> ( ( coeff ` Xp ) ` i ) = if ( i = 1 , 1 , 0 ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( i e. ( 0 ... n ) -> ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = ( if ( i = 1 , 1 , 0 ) x. ( ( coeff ` F ) ` ( n - i ) ) ) ) | 
						
							| 42 |  | ovif |  |-  ( if ( i = 1 , 1 , 0 ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) | 
						
							| 43 | 41 42 | eqtrdi |  |-  ( i e. ( 0 ... n ) -> ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) ) | 
						
							| 45 | 44 | sumeq2dv |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = sum_ i e. ( 0 ... n ) if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) ) | 
						
							| 46 |  | velsn |  |-  ( i e. { 1 } <-> i = 1 ) | 
						
							| 47 | 46 | bicomi |  |-  ( i = 1 <-> i e. { 1 } ) | 
						
							| 48 | 47 | a1i |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( i = 1 <-> i e. { 1 } ) ) | 
						
							| 49 | 35 | coef2 |  |-  ( ( F e. ( Poly ` RR ) /\ 0 e. RR ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 50 | 1 12 49 | sylancl |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 51 | 50 | ad2antrr |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 52 |  | fznn0sub |  |-  ( i e. ( 0 ... n ) -> ( n - i ) e. NN0 ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( n - i ) e. NN0 ) | 
						
							| 54 | 51 53 | ffvelcdmd |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( ( coeff ` F ) ` ( n - i ) ) e. RR ) | 
						
							| 55 | 54 | recnd |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( ( coeff ` F ) ` ( n - i ) ) e. CC ) | 
						
							| 56 | 55 | mullidd |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) = ( ( coeff ` F ) ` ( n - i ) ) ) | 
						
							| 57 | 55 | mul02d |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) = 0 ) | 
						
							| 58 | 48 56 57 | ifbieq12d |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) = if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) | 
						
							| 59 | 58 | sumeq2dv |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) = sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) | 
						
							| 60 |  | eqeq2 |  |-  ( 0 = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) -> ( sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 <-> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) | 
						
							| 61 |  | eqeq2 |  |-  ( ( ( coeff ` F ) ` ( n - 1 ) ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) -> ( sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = ( ( coeff ` F ) ` ( n - 1 ) ) <-> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) | 
						
							| 62 |  | oveq2 |  |-  ( n = 0 -> ( 0 ... n ) = ( 0 ... 0 ) ) | 
						
							| 63 |  | 0z |  |-  0 e. ZZ | 
						
							| 64 |  | fzsn |  |-  ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) | 
						
							| 65 | 63 64 | ax-mp |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 66 | 62 65 | eqtrdi |  |-  ( n = 0 -> ( 0 ... n ) = { 0 } ) | 
						
							| 67 |  | elsni |  |-  ( i e. { 0 } -> i = 0 ) | 
						
							| 68 | 67 | adantl |  |-  ( ( n = 0 /\ i e. { 0 } ) -> i = 0 ) | 
						
							| 69 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 70 | 69 | nesymi |  |-  -. 0 = 1 | 
						
							| 71 |  | eqeq1 |  |-  ( i = 0 -> ( i = 1 <-> 0 = 1 ) ) | 
						
							| 72 | 70 71 | mtbiri |  |-  ( i = 0 -> -. i = 1 ) | 
						
							| 73 | 47 | notbii |  |-  ( -. i = 1 <-> -. i e. { 1 } ) | 
						
							| 74 | 73 | biimpi |  |-  ( -. i = 1 -> -. i e. { 1 } ) | 
						
							| 75 |  | iffalse |  |-  ( -. i e. { 1 } -> if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) | 
						
							| 76 | 68 72 74 75 | 4syl |  |-  ( ( n = 0 /\ i e. { 0 } ) -> if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) | 
						
							| 77 | 66 76 | sumeq12rdv |  |-  ( n = 0 -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = sum_ i e. { 0 } 0 ) | 
						
							| 78 |  | snfi |  |-  { 0 } e. Fin | 
						
							| 79 | 78 | olci |  |-  ( { 0 } C_ ( ZZ>= ` 0 ) \/ { 0 } e. Fin ) | 
						
							| 80 |  | sumz |  |-  ( ( { 0 } C_ ( ZZ>= ` 0 ) \/ { 0 } e. Fin ) -> sum_ i e. { 0 } 0 = 0 ) | 
						
							| 81 | 79 80 | ax-mp |  |-  sum_ i e. { 0 } 0 = 0 | 
						
							| 82 | 77 81 | eqtrdi |  |-  ( n = 0 -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ n = 0 ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) | 
						
							| 84 |  | simpll |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> F e. ( ( Poly ` RR ) \ { 0p } ) ) | 
						
							| 85 | 33 | adantr |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN0 ) | 
						
							| 86 |  | simpr |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> -. n = 0 ) | 
						
							| 87 | 86 | neqned |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> n =/= 0 ) | 
						
							| 88 |  | elnnne0 |  |-  ( n e. NN <-> ( n e. NN0 /\ n =/= 0 ) ) | 
						
							| 89 | 85 87 88 | sylanbrc |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN ) | 
						
							| 90 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 91 | 90 | a1i |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> 1 e. NN0 ) | 
						
							| 92 |  | simpr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> n e. NN ) | 
						
							| 93 | 92 | nnnn0d |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> n e. NN0 ) | 
						
							| 94 | 92 | nnge1d |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> 1 <_ n ) | 
						
							| 95 |  | elfz2nn0 |  |-  ( 1 e. ( 0 ... n ) <-> ( 1 e. NN0 /\ n e. NN0 /\ 1 <_ n ) ) | 
						
							| 96 | 91 93 94 95 | syl3anbrc |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> 1 e. ( 0 ... n ) ) | 
						
							| 97 | 96 | snssd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> { 1 } C_ ( 0 ... n ) ) | 
						
							| 98 | 50 | ad2antrr |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 99 |  | oveq2 |  |-  ( i = 1 -> ( n - i ) = ( n - 1 ) ) | 
						
							| 100 | 46 99 | sylbi |  |-  ( i e. { 1 } -> ( n - i ) = ( n - 1 ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( n - i ) = ( n - 1 ) ) | 
						
							| 102 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 103 | 102 | ad2antlr |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( n - 1 ) e. NN0 ) | 
						
							| 104 | 101 103 | eqeltrd |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( n - i ) e. NN0 ) | 
						
							| 105 | 98 104 | ffvelcdmd |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( ( coeff ` F ) ` ( n - i ) ) e. RR ) | 
						
							| 106 | 105 | recnd |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( ( coeff ` F ) ` ( n - i ) ) e. CC ) | 
						
							| 107 | 106 | ralrimiva |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> A. i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) e. CC ) | 
						
							| 108 |  | fzfi |  |-  ( 0 ... n ) e. Fin | 
						
							| 109 | 108 | olci |  |-  ( ( 0 ... n ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... n ) e. Fin ) | 
						
							| 110 | 109 | a1i |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( ( 0 ... n ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... n ) e. Fin ) ) | 
						
							| 111 |  | sumss2 |  |-  ( ( ( { 1 } C_ ( 0 ... n ) /\ A. i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) e. CC ) /\ ( ( 0 ... n ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... n ) e. Fin ) ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) | 
						
							| 112 | 97 107 110 111 | syl21anc |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) | 
						
							| 113 | 50 | adantr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( coeff ` F ) : NN0 --> RR ) | 
						
							| 114 | 102 | adantl |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( n - 1 ) e. NN0 ) | 
						
							| 115 | 113 114 | ffvelcdmd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( ( coeff ` F ) ` ( n - 1 ) ) e. RR ) | 
						
							| 116 | 115 | recnd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( ( coeff ` F ) ` ( n - 1 ) ) e. CC ) | 
						
							| 117 | 99 | fveq2d |  |-  ( i = 1 -> ( ( coeff ` F ) ` ( n - i ) ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) | 
						
							| 118 | 117 | sumsn |  |-  ( ( 1 e. RR /\ ( ( coeff ` F ) ` ( n - 1 ) ) e. CC ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) | 
						
							| 119 | 3 116 118 | sylancr |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) | 
						
							| 120 | 112 119 | eqtr3d |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) | 
						
							| 121 | 84 89 120 | syl2anc |  |-  ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) | 
						
							| 122 | 60 61 83 121 | ifbothda |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) | 
						
							| 123 | 59 122 | eqtrd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) | 
						
							| 124 | 37 45 123 | 3eqtrd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( Xp oF x. F ) ) ` n ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) | 
						
							| 125 | 30 124 | eqtrd |  |-  ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( F oF x. Xp ) ) ` n ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) | 
						
							| 126 | 125 | mpteq2dva |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( n e. NN0 |-> ( ( coeff ` ( F oF x. Xp ) ) ` n ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) | 
						
							| 127 | 16 126 | eqtrd |  |-  ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |