Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> F e. ( Poly ` RR ) ) |
2 |
|
ax-resscn |
|- RR C_ CC |
3 |
|
1re |
|- 1 e. RR |
4 |
|
plyid |
|- ( ( RR C_ CC /\ 1 e. RR ) -> Xp e. ( Poly ` RR ) ) |
5 |
2 3 4
|
mp2an |
|- Xp e. ( Poly ` RR ) |
6 |
5
|
a1i |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> Xp e. ( Poly ` RR ) ) |
7 |
|
simprl |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> x e. RR ) |
8 |
|
simprr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> y e. RR ) |
9 |
7 8
|
readdcld |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) |
10 |
7 8
|
remulcld |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
11 |
1 6 9 10
|
plymul |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( F oF x. Xp ) e. ( Poly ` RR ) ) |
12 |
|
0re |
|- 0 e. RR |
13 |
|
eqid |
|- ( coeff ` ( F oF x. Xp ) ) = ( coeff ` ( F oF x. Xp ) ) |
14 |
13
|
coef2 |
|- ( ( ( F oF x. Xp ) e. ( Poly ` RR ) /\ 0 e. RR ) -> ( coeff ` ( F oF x. Xp ) ) : NN0 --> RR ) |
15 |
11 12 14
|
sylancl |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) : NN0 --> RR ) |
16 |
15
|
feqmptd |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> ( ( coeff ` ( F oF x. Xp ) ) ` n ) ) ) |
17 |
|
cnex |
|- CC e. _V |
18 |
17
|
a1i |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> CC e. _V ) |
19 |
|
plyf |
|- ( F e. ( Poly ` RR ) -> F : CC --> CC ) |
20 |
1 19
|
syl |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> F : CC --> CC ) |
21 |
|
plyf |
|- ( Xp e. ( Poly ` RR ) -> Xp : CC --> CC ) |
22 |
5 21
|
ax-mp |
|- Xp : CC --> CC |
23 |
22
|
a1i |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> Xp : CC --> CC ) |
24 |
|
simprl |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. CC /\ y e. CC ) ) -> x e. CC ) |
25 |
|
simprr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. CC /\ y e. CC ) ) -> y e. CC ) |
26 |
24 25
|
mulcomd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) |
27 |
18 20 23 26
|
caofcom |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( F oF x. Xp ) = ( Xp oF x. F ) ) |
28 |
27
|
fveq2d |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( coeff ` ( Xp oF x. F ) ) ) |
29 |
28
|
fveq1d |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( ( coeff ` ( F oF x. Xp ) ) ` n ) = ( ( coeff ` ( Xp oF x. F ) ) ` n ) ) |
30 |
29
|
adantr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( F oF x. Xp ) ) ` n ) = ( ( coeff ` ( Xp oF x. F ) ) ` n ) ) |
31 |
5
|
a1i |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> Xp e. ( Poly ` RR ) ) |
32 |
1
|
adantr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> F e. ( Poly ` RR ) ) |
33 |
|
simpr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> n e. NN0 ) |
34 |
|
eqid |
|- ( coeff ` Xp ) = ( coeff ` Xp ) |
35 |
|
eqid |
|- ( coeff ` F ) = ( coeff ` F ) |
36 |
34 35
|
coemul |
|- ( ( Xp e. ( Poly ` RR ) /\ F e. ( Poly ` RR ) /\ n e. NN0 ) -> ( ( coeff ` ( Xp oF x. F ) ) ` n ) = sum_ i e. ( 0 ... n ) ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) ) |
37 |
31 32 33 36
|
syl3anc |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( Xp oF x. F ) ) ` n ) = sum_ i e. ( 0 ... n ) ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) ) |
38 |
|
elfznn0 |
|- ( i e. ( 0 ... n ) -> i e. NN0 ) |
39 |
|
coeidp |
|- ( i e. NN0 -> ( ( coeff ` Xp ) ` i ) = if ( i = 1 , 1 , 0 ) ) |
40 |
38 39
|
syl |
|- ( i e. ( 0 ... n ) -> ( ( coeff ` Xp ) ` i ) = if ( i = 1 , 1 , 0 ) ) |
41 |
40
|
oveq1d |
|- ( i e. ( 0 ... n ) -> ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = ( if ( i = 1 , 1 , 0 ) x. ( ( coeff ` F ) ` ( n - i ) ) ) ) |
42 |
|
ovif |
|- ( if ( i = 1 , 1 , 0 ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) |
43 |
41 42
|
eqtrdi |
|- ( i e. ( 0 ... n ) -> ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) ) |
44 |
43
|
adantl |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) ) |
45 |
44
|
sumeq2dv |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) ( ( ( coeff ` Xp ) ` i ) x. ( ( coeff ` F ) ` ( n - i ) ) ) = sum_ i e. ( 0 ... n ) if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) ) |
46 |
|
velsn |
|- ( i e. { 1 } <-> i = 1 ) |
47 |
46
|
bicomi |
|- ( i = 1 <-> i e. { 1 } ) |
48 |
47
|
a1i |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( i = 1 <-> i e. { 1 } ) ) |
49 |
35
|
coef2 |
|- ( ( F e. ( Poly ` RR ) /\ 0 e. RR ) -> ( coeff ` F ) : NN0 --> RR ) |
50 |
1 12 49
|
sylancl |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` F ) : NN0 --> RR ) |
51 |
50
|
ad2antrr |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( coeff ` F ) : NN0 --> RR ) |
52 |
|
fznn0sub |
|- ( i e. ( 0 ... n ) -> ( n - i ) e. NN0 ) |
53 |
52
|
adantl |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( n - i ) e. NN0 ) |
54 |
51 53
|
ffvelrnd |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( ( coeff ` F ) ` ( n - i ) ) e. RR ) |
55 |
54
|
recnd |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( ( coeff ` F ) ` ( n - i ) ) e. CC ) |
56 |
55
|
mulid2d |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) = ( ( coeff ` F ) ` ( n - i ) ) ) |
57 |
55
|
mul02d |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) = 0 ) |
58 |
48 56 57
|
ifbieq12d |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ i e. ( 0 ... n ) ) -> if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) = if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) |
59 |
58
|
sumeq2dv |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) = sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) |
60 |
|
eqeq2 |
|- ( 0 = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) -> ( sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 <-> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
61 |
|
eqeq2 |
|- ( ( ( coeff ` F ) ` ( n - 1 ) ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) -> ( sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = ( ( coeff ` F ) ` ( n - 1 ) ) <-> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
62 |
|
oveq2 |
|- ( n = 0 -> ( 0 ... n ) = ( 0 ... 0 ) ) |
63 |
|
0z |
|- 0 e. ZZ |
64 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
65 |
63 64
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
66 |
62 65
|
eqtrdi |
|- ( n = 0 -> ( 0 ... n ) = { 0 } ) |
67 |
|
elsni |
|- ( i e. { 0 } -> i = 0 ) |
68 |
67
|
adantl |
|- ( ( n = 0 /\ i e. { 0 } ) -> i = 0 ) |
69 |
|
ax-1ne0 |
|- 1 =/= 0 |
70 |
69
|
nesymi |
|- -. 0 = 1 |
71 |
|
eqeq1 |
|- ( i = 0 -> ( i = 1 <-> 0 = 1 ) ) |
72 |
70 71
|
mtbiri |
|- ( i = 0 -> -. i = 1 ) |
73 |
68 72
|
syl |
|- ( ( n = 0 /\ i e. { 0 } ) -> -. i = 1 ) |
74 |
47
|
notbii |
|- ( -. i = 1 <-> -. i e. { 1 } ) |
75 |
74
|
biimpi |
|- ( -. i = 1 -> -. i e. { 1 } ) |
76 |
|
iffalse |
|- ( -. i e. { 1 } -> if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) |
77 |
73 75 76
|
3syl |
|- ( ( n = 0 /\ i e. { 0 } ) -> if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) |
78 |
66 77
|
sumeq12rdv |
|- ( n = 0 -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = sum_ i e. { 0 } 0 ) |
79 |
|
snfi |
|- { 0 } e. Fin |
80 |
79
|
olci |
|- ( { 0 } C_ ( ZZ>= ` 0 ) \/ { 0 } e. Fin ) |
81 |
|
sumz |
|- ( ( { 0 } C_ ( ZZ>= ` 0 ) \/ { 0 } e. Fin ) -> sum_ i e. { 0 } 0 = 0 ) |
82 |
80 81
|
ax-mp |
|- sum_ i e. { 0 } 0 = 0 |
83 |
78 82
|
eqtrdi |
|- ( n = 0 -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) |
84 |
83
|
adantl |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ n = 0 ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = 0 ) |
85 |
|
simpll |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> F e. ( ( Poly ` RR ) \ { 0p } ) ) |
86 |
33
|
adantr |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN0 ) |
87 |
|
simpr |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> -. n = 0 ) |
88 |
87
|
neqned |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> n =/= 0 ) |
89 |
|
elnnne0 |
|- ( n e. NN <-> ( n e. NN0 /\ n =/= 0 ) ) |
90 |
86 88 89
|
sylanbrc |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> n e. NN ) |
91 |
|
1nn0 |
|- 1 e. NN0 |
92 |
91
|
a1i |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> 1 e. NN0 ) |
93 |
|
simpr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> n e. NN ) |
94 |
93
|
nnnn0d |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> n e. NN0 ) |
95 |
93
|
nnge1d |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> 1 <_ n ) |
96 |
|
elfz2nn0 |
|- ( 1 e. ( 0 ... n ) <-> ( 1 e. NN0 /\ n e. NN0 /\ 1 <_ n ) ) |
97 |
92 94 95 96
|
syl3anbrc |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> 1 e. ( 0 ... n ) ) |
98 |
97
|
snssd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> { 1 } C_ ( 0 ... n ) ) |
99 |
50
|
ad2antrr |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( coeff ` F ) : NN0 --> RR ) |
100 |
|
oveq2 |
|- ( i = 1 -> ( n - i ) = ( n - 1 ) ) |
101 |
46 100
|
sylbi |
|- ( i e. { 1 } -> ( n - i ) = ( n - 1 ) ) |
102 |
101
|
adantl |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( n - i ) = ( n - 1 ) ) |
103 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
104 |
103
|
ad2antlr |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( n - 1 ) e. NN0 ) |
105 |
102 104
|
eqeltrd |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( n - i ) e. NN0 ) |
106 |
99 105
|
ffvelrnd |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( ( coeff ` F ) ` ( n - i ) ) e. RR ) |
107 |
106
|
recnd |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) /\ i e. { 1 } ) -> ( ( coeff ` F ) ` ( n - i ) ) e. CC ) |
108 |
107
|
ralrimiva |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> A. i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) e. CC ) |
109 |
|
fzfi |
|- ( 0 ... n ) e. Fin |
110 |
109
|
olci |
|- ( ( 0 ... n ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... n ) e. Fin ) |
111 |
110
|
a1i |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( ( 0 ... n ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... n ) e. Fin ) ) |
112 |
|
sumss2 |
|- ( ( ( { 1 } C_ ( 0 ... n ) /\ A. i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) e. CC ) /\ ( ( 0 ... n ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... n ) e. Fin ) ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) |
113 |
98 108 111 112
|
syl21anc |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) ) |
114 |
50
|
adantr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( coeff ` F ) : NN0 --> RR ) |
115 |
103
|
adantl |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( n - 1 ) e. NN0 ) |
116 |
114 115
|
ffvelrnd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( ( coeff ` F ) ` ( n - 1 ) ) e. RR ) |
117 |
116
|
recnd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> ( ( coeff ` F ) ` ( n - 1 ) ) e. CC ) |
118 |
100
|
fveq2d |
|- ( i = 1 -> ( ( coeff ` F ) ` ( n - i ) ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) |
119 |
118
|
sumsn |
|- ( ( 1 e. RR /\ ( ( coeff ` F ) ` ( n - 1 ) ) e. CC ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) |
120 |
3 117 119
|
sylancr |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> sum_ i e. { 1 } ( ( coeff ` F ) ` ( n - i ) ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) |
121 |
113 120
|
eqtr3d |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) |
122 |
85 90 121
|
syl2anc |
|- ( ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) /\ -. n = 0 ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = ( ( coeff ` F ) ` ( n - 1 ) ) ) |
123 |
60 61 84 122
|
ifbothda |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) if ( i e. { 1 } , ( ( coeff ` F ) ` ( n - i ) ) , 0 ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) |
124 |
59 123
|
eqtrd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> sum_ i e. ( 0 ... n ) if ( i = 1 , ( 1 x. ( ( coeff ` F ) ` ( n - i ) ) ) , ( 0 x. ( ( coeff ` F ) ` ( n - i ) ) ) ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) |
125 |
37 45 124
|
3eqtrd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( Xp oF x. F ) ) ` n ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) |
126 |
30 125
|
eqtrd |
|- ( ( F e. ( ( Poly ` RR ) \ { 0p } ) /\ n e. NN0 ) -> ( ( coeff ` ( F oF x. Xp ) ) ` n ) = if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) |
127 |
126
|
mpteq2dva |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( n e. NN0 |-> ( ( coeff ` ( F oF x. Xp ) ) ` n ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
128 |
16 127
|
eqtrd |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |