Step |
Hyp |
Ref |
Expression |
1 |
|
ax-resscn |
|- RR C_ CC |
2 |
|
1re |
|- 1 e. RR |
3 |
|
plyid |
|- ( ( RR C_ CC /\ 1 e. RR ) -> Xp e. ( Poly ` RR ) ) |
4 |
1 2 3
|
mp2an |
|- Xp e. ( Poly ` RR ) |
5 |
|
plymul02 |
|- ( Xp e. ( Poly ` RR ) -> ( 0p oF x. Xp ) = 0p ) |
6 |
5
|
fveq2d |
|- ( Xp e. ( Poly ` RR ) -> ( coeff ` ( 0p oF x. Xp ) ) = ( coeff ` 0p ) ) |
7 |
4 6
|
ax-mp |
|- ( coeff ` ( 0p oF x. Xp ) ) = ( coeff ` 0p ) |
8 |
|
fconstmpt |
|- ( NN0 X. { 0 } ) = ( n e. NN0 |-> 0 ) |
9 |
|
coe0 |
|- ( coeff ` 0p ) = ( NN0 X. { 0 } ) |
10 |
|
eqidd |
|- ( ( n e. NN0 /\ n = 0 ) -> 0 = 0 ) |
11 |
|
elnnne0 |
|- ( n e. NN <-> ( n e. NN0 /\ n =/= 0 ) ) |
12 |
|
df-ne |
|- ( n =/= 0 <-> -. n = 0 ) |
13 |
12
|
anbi2i |
|- ( ( n e. NN0 /\ n =/= 0 ) <-> ( n e. NN0 /\ -. n = 0 ) ) |
14 |
11 13
|
bitr2i |
|- ( ( n e. NN0 /\ -. n = 0 ) <-> n e. NN ) |
15 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
16 |
14 15
|
sylbi |
|- ( ( n e. NN0 /\ -. n = 0 ) -> ( n - 1 ) e. NN0 ) |
17 |
|
eqidd |
|- ( m = ( n - 1 ) -> 0 = 0 ) |
18 |
|
fconstmpt |
|- ( NN0 X. { 0 } ) = ( m e. NN0 |-> 0 ) |
19 |
9 18
|
eqtri |
|- ( coeff ` 0p ) = ( m e. NN0 |-> 0 ) |
20 |
|
c0ex |
|- 0 e. _V |
21 |
17 19 20
|
fvmpt |
|- ( ( n - 1 ) e. NN0 -> ( ( coeff ` 0p ) ` ( n - 1 ) ) = 0 ) |
22 |
16 21
|
syl |
|- ( ( n e. NN0 /\ -. n = 0 ) -> ( ( coeff ` 0p ) ` ( n - 1 ) ) = 0 ) |
23 |
10 22
|
ifeqda |
|- ( n e. NN0 -> if ( n = 0 , 0 , ( ( coeff ` 0p ) ` ( n - 1 ) ) ) = 0 ) |
24 |
23
|
mpteq2ia |
|- ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` 0p ) ` ( n - 1 ) ) ) ) = ( n e. NN0 |-> 0 ) |
25 |
8 9 24
|
3eqtr4ri |
|- ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` 0p ) ` ( n - 1 ) ) ) ) = ( coeff ` 0p ) |
26 |
7 25
|
eqtr4i |
|- ( coeff ` ( 0p oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` 0p ) ` ( n - 1 ) ) ) ) |
27 |
|
fvoveq1 |
|- ( F = 0p -> ( coeff ` ( F oF x. Xp ) ) = ( coeff ` ( 0p oF x. Xp ) ) ) |
28 |
|
simpl |
|- ( ( F = 0p /\ n e. NN0 ) -> F = 0p ) |
29 |
28
|
fveq2d |
|- ( ( F = 0p /\ n e. NN0 ) -> ( coeff ` F ) = ( coeff ` 0p ) ) |
30 |
29
|
fveq1d |
|- ( ( F = 0p /\ n e. NN0 ) -> ( ( coeff ` F ) ` ( n - 1 ) ) = ( ( coeff ` 0p ) ` ( n - 1 ) ) ) |
31 |
30
|
ifeq2d |
|- ( ( F = 0p /\ n e. NN0 ) -> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) = if ( n = 0 , 0 , ( ( coeff ` 0p ) ` ( n - 1 ) ) ) ) |
32 |
31
|
mpteq2dva |
|- ( F = 0p -> ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` 0p ) ` ( n - 1 ) ) ) ) ) |
33 |
26 27 32
|
3eqtr4a |
|- ( F = 0p -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
34 |
33
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ F = 0p ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
35 |
|
simpl |
|- ( ( F e. ( Poly ` RR ) /\ -. F = 0p ) -> F e. ( Poly ` RR ) ) |
36 |
|
elsng |
|- ( F e. ( Poly ` RR ) -> ( F e. { 0p } <-> F = 0p ) ) |
37 |
36
|
notbid |
|- ( F e. ( Poly ` RR ) -> ( -. F e. { 0p } <-> -. F = 0p ) ) |
38 |
37
|
biimpar |
|- ( ( F e. ( Poly ` RR ) /\ -. F = 0p ) -> -. F e. { 0p } ) |
39 |
35 38
|
eldifd |
|- ( ( F e. ( Poly ` RR ) /\ -. F = 0p ) -> F e. ( ( Poly ` RR ) \ { 0p } ) ) |
40 |
|
plymulx0 |
|- ( F e. ( ( Poly ` RR ) \ { 0p } ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
41 |
39 40
|
syl |
|- ( ( F e. ( Poly ` RR ) /\ -. F = 0p ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |
42 |
34 41
|
pm2.61dan |
|- ( F e. ( Poly ` RR ) -> ( coeff ` ( F oF x. Xp ) ) = ( n e. NN0 |-> if ( n = 0 , 0 , ( ( coeff ` F ) ` ( n - 1 ) ) ) ) ) |