| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-resscn |
|
| 2 |
|
1re |
|
| 3 |
|
plyid |
|
| 4 |
1 2 3
|
mp2an |
|
| 5 |
|
plymul02 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
4 6
|
ax-mp |
|
| 8 |
|
fconstmpt |
|
| 9 |
|
coe0 |
|
| 10 |
|
eqidd |
|
| 11 |
|
elnnne0 |
|
| 12 |
|
df-ne |
|
| 13 |
12
|
anbi2i |
|
| 14 |
11 13
|
bitr2i |
|
| 15 |
|
nnm1nn0 |
|
| 16 |
14 15
|
sylbi |
|
| 17 |
|
eqidd |
|
| 18 |
|
fconstmpt |
|
| 19 |
9 18
|
eqtri |
|
| 20 |
|
c0ex |
|
| 21 |
17 19 20
|
fvmpt |
|
| 22 |
16 21
|
syl |
|
| 23 |
10 22
|
ifeqda |
|
| 24 |
23
|
mpteq2ia |
|
| 25 |
8 9 24
|
3eqtr4ri |
|
| 26 |
7 25
|
eqtr4i |
|
| 27 |
|
fvoveq1 |
|
| 28 |
|
simpl |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
fveq1d |
|
| 31 |
30
|
ifeq2d |
|
| 32 |
31
|
mpteq2dva |
|
| 33 |
26 27 32
|
3eqtr4a |
|
| 34 |
33
|
adantl |
|
| 35 |
|
simpl |
|
| 36 |
|
elsng |
|
| 37 |
36
|
notbid |
|
| 38 |
37
|
biimpar |
|
| 39 |
35 38
|
eldifd |
|
| 40 |
|
plymulx0 |
|
| 41 |
39 40
|
syl |
|
| 42 |
34 41
|
pm2.61dan |
|