Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|
2 |
|
ax-resscn |
|
3 |
|
1re |
|
4 |
|
plyid |
|
5 |
2 3 4
|
mp2an |
|
6 |
5
|
a1i |
|
7 |
|
simprl |
|
8 |
|
simprr |
|
9 |
7 8
|
readdcld |
|
10 |
7 8
|
remulcld |
|
11 |
1 6 9 10
|
plymul |
|
12 |
|
0re |
|
13 |
|
eqid |
|
14 |
13
|
coef2 |
|
15 |
11 12 14
|
sylancl |
|
16 |
15
|
feqmptd |
|
17 |
|
cnex |
|
18 |
17
|
a1i |
|
19 |
|
plyf |
|
20 |
1 19
|
syl |
|
21 |
|
plyf |
|
22 |
5 21
|
ax-mp |
|
23 |
22
|
a1i |
|
24 |
|
simprl |
|
25 |
|
simprr |
|
26 |
24 25
|
mulcomd |
|
27 |
18 20 23 26
|
caofcom |
|
28 |
27
|
fveq2d |
|
29 |
28
|
fveq1d |
|
30 |
29
|
adantr |
|
31 |
5
|
a1i |
|
32 |
1
|
adantr |
|
33 |
|
simpr |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
34 35
|
coemul |
|
37 |
31 32 33 36
|
syl3anc |
|
38 |
|
elfznn0 |
|
39 |
|
coeidp |
|
40 |
38 39
|
syl |
|
41 |
40
|
oveq1d |
|
42 |
|
ovif |
|
43 |
41 42
|
eqtrdi |
|
44 |
43
|
adantl |
|
45 |
44
|
sumeq2dv |
|
46 |
|
velsn |
|
47 |
46
|
bicomi |
|
48 |
47
|
a1i |
|
49 |
35
|
coef2 |
|
50 |
1 12 49
|
sylancl |
|
51 |
50
|
ad2antrr |
|
52 |
|
fznn0sub |
|
53 |
52
|
adantl |
|
54 |
51 53
|
ffvelcdmd |
|
55 |
54
|
recnd |
|
56 |
55
|
mullidd |
|
57 |
55
|
mul02d |
|
58 |
48 56 57
|
ifbieq12d |
|
59 |
58
|
sumeq2dv |
|
60 |
|
eqeq2 |
|
61 |
|
eqeq2 |
|
62 |
|
oveq2 |
|
63 |
|
0z |
|
64 |
|
fzsn |
|
65 |
63 64
|
ax-mp |
|
66 |
62 65
|
eqtrdi |
|
67 |
|
elsni |
|
68 |
67
|
adantl |
|
69 |
|
ax-1ne0 |
|
70 |
69
|
nesymi |
|
71 |
|
eqeq1 |
|
72 |
70 71
|
mtbiri |
|
73 |
47
|
notbii |
|
74 |
73
|
biimpi |
|
75 |
|
iffalse |
|
76 |
68 72 74 75
|
4syl |
|
77 |
66 76
|
sumeq12rdv |
|
78 |
|
snfi |
|
79 |
78
|
olci |
|
80 |
|
sumz |
|
81 |
79 80
|
ax-mp |
|
82 |
77 81
|
eqtrdi |
|
83 |
82
|
adantl |
|
84 |
|
simpll |
|
85 |
33
|
adantr |
|
86 |
|
simpr |
|
87 |
86
|
neqned |
|
88 |
|
elnnne0 |
|
89 |
85 87 88
|
sylanbrc |
|
90 |
|
1nn0 |
|
91 |
90
|
a1i |
|
92 |
|
simpr |
|
93 |
92
|
nnnn0d |
|
94 |
92
|
nnge1d |
|
95 |
|
elfz2nn0 |
|
96 |
91 93 94 95
|
syl3anbrc |
|
97 |
96
|
snssd |
|
98 |
50
|
ad2antrr |
|
99 |
|
oveq2 |
|
100 |
46 99
|
sylbi |
|
101 |
100
|
adantl |
|
102 |
|
nnm1nn0 |
|
103 |
102
|
ad2antlr |
|
104 |
101 103
|
eqeltrd |
|
105 |
98 104
|
ffvelcdmd |
|
106 |
105
|
recnd |
|
107 |
106
|
ralrimiva |
|
108 |
|
fzfi |
|
109 |
108
|
olci |
|
110 |
109
|
a1i |
|
111 |
|
sumss2 |
|
112 |
97 107 110 111
|
syl21anc |
|
113 |
50
|
adantr |
|
114 |
102
|
adantl |
|
115 |
113 114
|
ffvelcdmd |
|
116 |
115
|
recnd |
|
117 |
99
|
fveq2d |
|
118 |
117
|
sumsn |
|
119 |
3 116 118
|
sylancr |
|
120 |
112 119
|
eqtr3d |
|
121 |
84 89 120
|
syl2anc |
|
122 |
60 61 83 121
|
ifbothda |
|
123 |
59 122
|
eqtrd |
|
124 |
37 45 123
|
3eqtrd |
|
125 |
30 124
|
eqtrd |
|
126 |
125
|
mpteq2dva |
|
127 |
16 126
|
eqtrd |
|