Metamath Proof Explorer


Theorem plymul02

Description: Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018)

Ref Expression
Assertion plymul02 FPolyS0𝑝×fF=0𝑝

Proof

Step Hyp Ref Expression
1 plyf FPolySF:
2 1 ffvelcdmda FPolySxFx
3 2 mul02d FPolySx0Fx=0
4 3 mpteq2dva FPolySx0Fx=x0
5 c0ex 0V
6 5 fconst ×0:0
7 df-0p 0𝑝=×0
8 7 feq1i 0𝑝:0×0:0
9 6 8 mpbir 0𝑝:0
10 ffn 0𝑝:00𝑝Fn
11 9 10 mp1i FPolyS0𝑝Fn
12 1 ffnd FPolySFFn
13 cnex V
14 13 a1i FPolySV
15 inidm =
16 0pval x0𝑝x=0
17 16 adantl FPolySx0𝑝x=0
18 eqidd FPolySxFx=Fx
19 11 12 14 14 15 17 18 offval FPolyS0𝑝×fF=x0Fx
20 fconstmpt ×0=x0
21 7 20 eqtri 0𝑝=x0
22 21 a1i FPolyS0𝑝=x0
23 4 19 22 3eqtr4d FPolyS0𝑝×fF=0𝑝