Step |
Hyp |
Ref |
Expression |
1 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
2 |
1
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
3 |
2
|
mul02d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 0 · ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
4 |
3
|
mpteq2dva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑥 ∈ ℂ ↦ ( 0 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
5 |
|
c0ex |
⊢ 0 ∈ V |
6 |
5
|
fconst |
⊢ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } |
7 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
8 |
7
|
feq1i |
⊢ ( 0𝑝 : ℂ ⟶ { 0 } ↔ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } ) |
9 |
6 8
|
mpbir |
⊢ 0𝑝 : ℂ ⟶ { 0 } |
10 |
|
ffn |
⊢ ( 0𝑝 : ℂ ⟶ { 0 } → 0𝑝 Fn ℂ ) |
11 |
9 10
|
mp1i |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0𝑝 Fn ℂ ) |
12 |
1
|
ffnd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 Fn ℂ ) |
13 |
|
cnex |
⊢ ℂ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ℂ ∈ V ) |
15 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
16 |
|
0pval |
⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
17 |
16
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
18 |
|
eqidd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
11 12 14 14 15 17 18
|
offval |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0𝑝 ∘f · 𝐹 ) = ( 𝑥 ∈ ℂ ↦ ( 0 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
20 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
21 |
7 20
|
eqtri |
⊢ 0𝑝 = ( 𝑥 ∈ ℂ ↦ 0 ) |
22 |
21
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0𝑝 = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
23 |
4 19 22
|
3eqtr4d |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0𝑝 ∘f · 𝐹 ) = 0𝑝 ) |