Metamath Proof Explorer


Theorem plymul02

Description: Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018)

Ref Expression
Assertion plymul02 ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0𝑝f · 𝐹 ) = 0𝑝 )

Proof

Step Hyp Ref Expression
1 plyf ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ )
2 1 ffvelrnda ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐹𝑥 ) ∈ ℂ )
3 2 mul02d ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 0 · ( 𝐹𝑥 ) ) = 0 )
4 3 mpteq2dva ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑥 ∈ ℂ ↦ ( 0 · ( 𝐹𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) )
5 c0ex 0 ∈ V
6 5 fconst ( ℂ × { 0 } ) : ℂ ⟶ { 0 }
7 df-0p 0𝑝 = ( ℂ × { 0 } )
8 7 feq1i ( 0𝑝 : ℂ ⟶ { 0 } ↔ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } )
9 6 8 mpbir 0𝑝 : ℂ ⟶ { 0 }
10 ffn ( 0𝑝 : ℂ ⟶ { 0 } → 0𝑝 Fn ℂ )
11 9 10 mp1i ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0𝑝 Fn ℂ )
12 1 ffnd ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 Fn ℂ )
13 cnex ℂ ∈ V
14 13 a1i ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ℂ ∈ V )
15 inidm ( ℂ ∩ ℂ ) = ℂ
16 0pval ( 𝑥 ∈ ℂ → ( 0𝑝𝑥 ) = 0 )
17 16 adantl ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 0𝑝𝑥 ) = 0 )
18 eqidd ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
19 11 12 14 14 15 17 18 offval ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0𝑝f · 𝐹 ) = ( 𝑥 ∈ ℂ ↦ ( 0 · ( 𝐹𝑥 ) ) ) )
20 fconstmpt ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 )
21 7 20 eqtri 0𝑝 = ( 𝑥 ∈ ℂ ↦ 0 )
22 21 a1i ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0𝑝 = ( 𝑥 ∈ ℂ ↦ 0 ) )
23 4 19 22 3eqtr4d ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0𝑝f · 𝐹 ) = 0𝑝 )