| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 2 | 1 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑥  ∈  ℂ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 3 | 2 | mul02d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑥  ∈  ℂ )  →  ( 0  ·  ( 𝐹 ‘ 𝑥 ) )  =  0 ) | 
						
							| 4 | 3 | mpteq2dva | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝑥  ∈  ℂ  ↦  ( 0  ·  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℂ  ↦  0 ) ) | 
						
							| 5 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 6 | 5 | fconst | ⊢ ( ℂ  ×  { 0 } ) : ℂ ⟶ { 0 } | 
						
							| 7 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 8 | 7 | feq1i | ⊢ ( 0𝑝 : ℂ ⟶ { 0 }  ↔  ( ℂ  ×  { 0 } ) : ℂ ⟶ { 0 } ) | 
						
							| 9 | 6 8 | mpbir | ⊢ 0𝑝 : ℂ ⟶ { 0 } | 
						
							| 10 |  | ffn | ⊢ ( 0𝑝 : ℂ ⟶ { 0 }  →  0𝑝  Fn  ℂ ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  0𝑝  Fn  ℂ ) | 
						
							| 12 | 1 | ffnd | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹  Fn  ℂ ) | 
						
							| 13 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ℂ  ∈  V ) | 
						
							| 15 |  | inidm | ⊢ ( ℂ  ∩  ℂ )  =  ℂ | 
						
							| 16 |  | 0pval | ⊢ ( 𝑥  ∈  ℂ  →  ( 0𝑝 ‘ 𝑥 )  =  0 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑥  ∈  ℂ )  →  ( 0𝑝 ‘ 𝑥 )  =  0 ) | 
						
							| 18 |  | eqidd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝑥  ∈  ℂ )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 | 11 12 14 14 15 17 18 | offval | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 0𝑝  ∘f   ·  𝐹 )  =  ( 𝑥  ∈  ℂ  ↦  ( 0  ·  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 20 |  | fconstmpt | ⊢ ( ℂ  ×  { 0 } )  =  ( 𝑥  ∈  ℂ  ↦  0 ) | 
						
							| 21 | 7 20 | eqtri | ⊢ 0𝑝  =  ( 𝑥  ∈  ℂ  ↦  0 ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  0𝑝  =  ( 𝑥  ∈  ℂ  ↦  0 ) ) | 
						
							| 23 | 4 19 22 | 3eqtr4d | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 0𝑝  ∘f   ·  𝐹 )  =  0𝑝 ) |