Step |
Hyp |
Ref |
Expression |
1 |
|
pmltpclem1.1 |
|- ( ph -> A e. S ) |
2 |
|
pmltpclem1.2 |
|- ( ph -> B e. S ) |
3 |
|
pmltpclem1.3 |
|- ( ph -> C e. S ) |
4 |
|
pmltpclem1.4 |
|- ( ph -> A < B ) |
5 |
|
pmltpclem1.5 |
|- ( ph -> B < C ) |
6 |
|
pmltpclem1.6 |
|- ( ph -> ( ( ( F ` A ) < ( F ` B ) /\ ( F ` C ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` C ) ) ) ) |
7 |
|
breq1 |
|- ( a = A -> ( a < b <-> A < b ) ) |
8 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
9 |
8
|
breq1d |
|- ( a = A -> ( ( F ` a ) < ( F ` b ) <-> ( F ` A ) < ( F ` b ) ) ) |
10 |
9
|
anbi1d |
|- ( a = A -> ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) <-> ( ( F ` A ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) ) ) |
11 |
8
|
breq2d |
|- ( a = A -> ( ( F ` b ) < ( F ` a ) <-> ( F ` b ) < ( F ` A ) ) ) |
12 |
11
|
anbi1d |
|- ( a = A -> ( ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) <-> ( ( F ` b ) < ( F ` A ) /\ ( F ` b ) < ( F ` c ) ) ) ) |
13 |
10 12
|
orbi12d |
|- ( a = A -> ( ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) <-> ( ( ( F ` A ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` A ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
14 |
7 13
|
3anbi13d |
|- ( a = A -> ( ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) <-> ( A < b /\ b < c /\ ( ( ( F ` A ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` A ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) ) |
15 |
|
breq2 |
|- ( b = B -> ( A < b <-> A < B ) ) |
16 |
|
breq1 |
|- ( b = B -> ( b < c <-> B < c ) ) |
17 |
|
fveq2 |
|- ( b = B -> ( F ` b ) = ( F ` B ) ) |
18 |
17
|
breq2d |
|- ( b = B -> ( ( F ` A ) < ( F ` b ) <-> ( F ` A ) < ( F ` B ) ) ) |
19 |
17
|
breq2d |
|- ( b = B -> ( ( F ` c ) < ( F ` b ) <-> ( F ` c ) < ( F ` B ) ) ) |
20 |
18 19
|
anbi12d |
|- ( b = B -> ( ( ( F ` A ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) <-> ( ( F ` A ) < ( F ` B ) /\ ( F ` c ) < ( F ` B ) ) ) ) |
21 |
17
|
breq1d |
|- ( b = B -> ( ( F ` b ) < ( F ` A ) <-> ( F ` B ) < ( F ` A ) ) ) |
22 |
17
|
breq1d |
|- ( b = B -> ( ( F ` b ) < ( F ` c ) <-> ( F ` B ) < ( F ` c ) ) ) |
23 |
21 22
|
anbi12d |
|- ( b = B -> ( ( ( F ` b ) < ( F ` A ) /\ ( F ` b ) < ( F ` c ) ) <-> ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` c ) ) ) ) |
24 |
20 23
|
orbi12d |
|- ( b = B -> ( ( ( ( F ` A ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` A ) /\ ( F ` b ) < ( F ` c ) ) ) <-> ( ( ( F ` A ) < ( F ` B ) /\ ( F ` c ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` c ) ) ) ) ) |
25 |
15 16 24
|
3anbi123d |
|- ( b = B -> ( ( A < b /\ b < c /\ ( ( ( F ` A ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` A ) /\ ( F ` b ) < ( F ` c ) ) ) ) <-> ( A < B /\ B < c /\ ( ( ( F ` A ) < ( F ` B ) /\ ( F ` c ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` c ) ) ) ) ) ) |
26 |
|
breq2 |
|- ( c = C -> ( B < c <-> B < C ) ) |
27 |
|
fveq2 |
|- ( c = C -> ( F ` c ) = ( F ` C ) ) |
28 |
27
|
breq1d |
|- ( c = C -> ( ( F ` c ) < ( F ` B ) <-> ( F ` C ) < ( F ` B ) ) ) |
29 |
28
|
anbi2d |
|- ( c = C -> ( ( ( F ` A ) < ( F ` B ) /\ ( F ` c ) < ( F ` B ) ) <-> ( ( F ` A ) < ( F ` B ) /\ ( F ` C ) < ( F ` B ) ) ) ) |
30 |
27
|
breq2d |
|- ( c = C -> ( ( F ` B ) < ( F ` c ) <-> ( F ` B ) < ( F ` C ) ) ) |
31 |
30
|
anbi2d |
|- ( c = C -> ( ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` c ) ) <-> ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` C ) ) ) ) |
32 |
29 31
|
orbi12d |
|- ( c = C -> ( ( ( ( F ` A ) < ( F ` B ) /\ ( F ` c ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` c ) ) ) <-> ( ( ( F ` A ) < ( F ` B ) /\ ( F ` C ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` C ) ) ) ) ) |
33 |
26 32
|
3anbi23d |
|- ( c = C -> ( ( A < B /\ B < c /\ ( ( ( F ` A ) < ( F ` B ) /\ ( F ` c ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` c ) ) ) ) <-> ( A < B /\ B < C /\ ( ( ( F ` A ) < ( F ` B ) /\ ( F ` C ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` C ) ) ) ) ) ) |
34 |
14 25 33
|
rspc3ev |
|- ( ( ( A e. S /\ B e. S /\ C e. S ) /\ ( A < B /\ B < C /\ ( ( ( F ` A ) < ( F ` B ) /\ ( F ` C ) < ( F ` B ) ) \/ ( ( F ` B ) < ( F ` A ) /\ ( F ` B ) < ( F ` C ) ) ) ) ) -> E. a e. S E. b e. S E. c e. S ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
35 |
1 2 3 4 5 6 34
|
syl33anc |
|- ( ph -> E. a e. S E. b e. S E. c e. S ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |