Metamath Proof Explorer


Theorem pmltpclem1

Description: Lemma for pmltpc . (Contributed by Mario Carneiro, 1-Jul-2014)

Ref Expression
Hypotheses pmltpclem1.1 φAS
pmltpclem1.2 φBS
pmltpclem1.3 φCS
pmltpclem1.4 φA<B
pmltpclem1.5 φB<C
pmltpclem1.6 φFA<FBFC<FBFB<FAFB<FC
Assertion pmltpclem1 φaSbScSa<bb<cFa<FbFc<FbFb<FaFb<Fc

Proof

Step Hyp Ref Expression
1 pmltpclem1.1 φAS
2 pmltpclem1.2 φBS
3 pmltpclem1.3 φCS
4 pmltpclem1.4 φA<B
5 pmltpclem1.5 φB<C
6 pmltpclem1.6 φFA<FBFC<FBFB<FAFB<FC
7 breq1 a=Aa<bA<b
8 fveq2 a=AFa=FA
9 8 breq1d a=AFa<FbFA<Fb
10 9 anbi1d a=AFa<FbFc<FbFA<FbFc<Fb
11 8 breq2d a=AFb<FaFb<FA
12 11 anbi1d a=AFb<FaFb<FcFb<FAFb<Fc
13 10 12 orbi12d a=AFa<FbFc<FbFb<FaFb<FcFA<FbFc<FbFb<FAFb<Fc
14 7 13 3anbi13d a=Aa<bb<cFa<FbFc<FbFb<FaFb<FcA<bb<cFA<FbFc<FbFb<FAFb<Fc
15 breq2 b=BA<bA<B
16 breq1 b=Bb<cB<c
17 fveq2 b=BFb=FB
18 17 breq2d b=BFA<FbFA<FB
19 17 breq2d b=BFc<FbFc<FB
20 18 19 anbi12d b=BFA<FbFc<FbFA<FBFc<FB
21 17 breq1d b=BFb<FAFB<FA
22 17 breq1d b=BFb<FcFB<Fc
23 21 22 anbi12d b=BFb<FAFb<FcFB<FAFB<Fc
24 20 23 orbi12d b=BFA<FbFc<FbFb<FAFb<FcFA<FBFc<FBFB<FAFB<Fc
25 15 16 24 3anbi123d b=BA<bb<cFA<FbFc<FbFb<FAFb<FcA<BB<cFA<FBFc<FBFB<FAFB<Fc
26 breq2 c=CB<cB<C
27 fveq2 c=CFc=FC
28 27 breq1d c=CFc<FBFC<FB
29 28 anbi2d c=CFA<FBFc<FBFA<FBFC<FB
30 27 breq2d c=CFB<FcFB<FC
31 30 anbi2d c=CFB<FAFB<FcFB<FAFB<FC
32 29 31 orbi12d c=CFA<FBFc<FBFB<FAFB<FcFA<FBFC<FBFB<FAFB<FC
33 26 32 3anbi23d c=CA<BB<cFA<FBFc<FBFB<FAFB<FcA<BB<CFA<FBFC<FBFB<FAFB<FC
34 14 25 33 rspc3ev ASBSCSA<BB<CFA<FBFC<FBFB<FAFB<FCaSbScSa<bb<cFa<FbFc<FbFb<FaFb<Fc
35 1 2 3 4 5 6 34 syl33anc φaSbScSa<bb<cFa<FbFc<FbFb<FaFb<Fc