Metamath Proof Explorer


Theorem pmltpclem2

Description: Lemma for pmltpc . (Contributed by Mario Carneiro, 1-Jul-2014)

Ref Expression
Hypotheses pmltpc.1 φ F 𝑝𝑚
pmltpc.2 φ A dom F
pmltpc.3 φ U A
pmltpc.4 φ V A
pmltpc.5 φ W A
pmltpc.6 φ X A
pmltpc.7 φ U V
pmltpc.8 φ W X
pmltpc.9 φ ¬ F U F V
pmltpc.10 φ ¬ F X F W
Assertion pmltpclem2 φ a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c

Proof

Step Hyp Ref Expression
1 pmltpc.1 φ F 𝑝𝑚
2 pmltpc.2 φ A dom F
3 pmltpc.3 φ U A
4 pmltpc.4 φ V A
5 pmltpc.5 φ W A
6 pmltpc.6 φ X A
7 pmltpc.7 φ U V
8 pmltpc.8 φ W X
9 pmltpc.9 φ ¬ F U F V
10 pmltpc.10 φ ¬ F X F W
11 5 ad2antrr φ F W < F U W < U W A
12 3 ad2antrr φ F W < F U W < U U A
13 4 ad2antrr φ F W < F U W < U V A
14 simpr φ F W < F U W < U W < U
15 reex V
16 15 15 elpm2 F 𝑝𝑚 F : dom F dom F
17 1 16 sylib φ F : dom F dom F
18 17 simprd φ dom F
19 2 3 sseldd φ U dom F
20 18 19 sseldd φ U
21 2 4 sseldd φ V dom F
22 18 21 sseldd φ V
23 17 simpld φ F : dom F
24 23 21 ffvelrnd φ F V
25 23 19 ffvelrnd φ F U
26 24 25 ltnled φ F V < F U ¬ F U F V
27 9 26 mpbird φ F V < F U
28 24 27 gtned φ F U F V
29 fveq2 V = U F V = F U
30 29 eqcomd V = U F U = F V
31 30 necon3i F U F V V U
32 28 31 syl φ V U
33 20 22 7 32 leneltd φ U < V
34 33 ad2antrr φ F W < F U W < U U < V
35 simplr φ F W < F U W < U F W < F U
36 27 ad2antrr φ F W < F U W < U F V < F U
37 35 36 jca φ F W < F U W < U F W < F U F V < F U
38 37 orcd φ F W < F U W < U F W < F U F V < F U F U < F W F U < F V
39 11 12 13 14 34 38 pmltpclem1 φ F W < F U W < U a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c
40 3 ad2antrr φ F W < F U U W U A
41 5 ad2antrr φ F W < F U U W W A
42 6 ad2antrr φ F W < F U U W X A
43 20 ad2antrr φ F W < F U U W U
44 2 5 sseldd φ W dom F
45 18 44 sseldd φ W
46 45 ad2antrr φ F W < F U U W W
47 simpr φ F W < F U U W U W
48 23 44 ffvelrnd φ F W
49 48 ad2antrr φ F W < F U U W F W
50 simplr φ F W < F U U W F W < F U
51 49 50 gtned φ F W < F U U W F U F W
52 fveq2 W = U F W = F U
53 52 eqcomd W = U F U = F W
54 53 necon3i F U F W W U
55 51 54 syl φ F W < F U U W W U
56 43 46 47 55 leneltd φ F W < F U U W U < W
57 2 6 sseldd φ X dom F
58 18 57 sseldd φ X
59 23 57 ffvelrnd φ F X
60 48 59 ltnled φ F W < F X ¬ F X F W
61 10 60 mpbird φ F W < F X
62 48 61 gtned φ F X F W
63 fveq2 X = W F X = F W
64 63 necon3i F X F W X W
65 62 64 syl φ X W
66 45 58 8 65 leneltd φ W < X
67 66 ad2antrr φ F W < F U U W W < X
68 61 ad2antrr φ F W < F U U W F W < F X
69 50 68 jca φ F W < F U U W F W < F U F W < F X
70 69 olcd φ F W < F U U W F U < F W F X < F W F W < F U F W < F X
71 40 41 42 56 67 70 pmltpclem1 φ F W < F U U W a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c
72 45 adantr φ F W < F U W
73 20 adantr φ F W < F U U
74 39 71 72 73 ltlecasei φ F W < F U a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c
75 3 ad2antrr φ F U F W V < X U A
76 4 ad2antrr φ F U F W V < X V A
77 6 ad2antrr φ F U F W V < X X A
78 33 ad2antrr φ F U F W V < X U < V
79 simpr φ F U F W V < X V < X
80 27 ad2antrr φ F U F W V < X F V < F U
81 24 adantr φ F U F W F V
82 25 adantr φ F U F W F U
83 59 adantr φ F U F W F X
84 27 adantr φ F U F W F V < F U
85 48 adantr φ F U F W F W
86 simpr φ F U F W F U F W
87 61 adantr φ F U F W F W < F X
88 82 85 83 86 87 lelttrd φ F U F W F U < F X
89 81 82 83 84 88 lttrd φ F U F W F V < F X
90 89 adantr φ F U F W V < X F V < F X
91 80 90 jca φ F U F W V < X F V < F U F V < F X
92 91 olcd φ F U F W V < X F U < F V F X < F V F V < F U F V < F X
93 75 76 77 78 79 92 pmltpclem1 φ F U F W V < X a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c
94 5 ad2antrr φ F U F W X V W A
95 6 ad2antrr φ F U F W X V X A
96 4 ad2antrr φ F U F W X V V A
97 66 ad2antrr φ F U F W X V W < X
98 58 ad2antrr φ F U F W X V X
99 22 ad2antrr φ F U F W X V V
100 simpr φ F U F W X V X V
101 24 ad2antrr φ F U F W X V F V
102 89 adantr φ F U F W X V F V < F X
103 101 102 gtned φ F U F W X V F X F V
104 fveq2 V = X F V = F X
105 104 eqcomd V = X F X = F V
106 105 necon3i F X F V V X
107 103 106 syl φ F U F W X V V X
108 98 99 100 107 leneltd φ F U F W X V X < V
109 61 ad2antrr φ F U F W X V F W < F X
110 109 102 jca φ F U F W X V F W < F X F V < F X
111 110 orcd φ F U F W X V F W < F X F V < F X F X < F W F X < F V
112 94 95 96 97 108 111 pmltpclem1 φ F U F W X V a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c
113 22 adantr φ F U F W V
114 58 adantr φ F U F W X
115 93 112 113 114 ltlecasei φ F U F W a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c
116 74 115 48 25 ltlecasei φ a A b A c A a < b b < c F a < F b F c < F b F b < F a F b < F c