Step |
Hyp |
Ref |
Expression |
1 |
|
pmltpc.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ ↑pm ℝ ) ) |
2 |
|
pmltpc.2 |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
3 |
|
pmltpc.3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
4 |
|
pmltpc.4 |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
5 |
|
pmltpc.5 |
⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
6 |
|
pmltpc.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
7 |
|
pmltpc.7 |
⊢ ( 𝜑 → 𝑈 ≤ 𝑉 ) |
8 |
|
pmltpc.8 |
⊢ ( 𝜑 → 𝑊 ≤ 𝑋 ) |
9 |
|
pmltpc.9 |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑉 ) ) |
10 |
|
pmltpc.10 |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑊 ) ) |
11 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑊 ∈ 𝐴 ) |
12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑈 ∈ 𝐴 ) |
13 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑉 ∈ 𝐴 ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑊 < 𝑈 ) |
15 |
|
reex |
⊢ ℝ ∈ V |
16 |
15 15
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) ) |
17 |
1 16
|
sylib |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) ) |
18 |
17
|
simprd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
19 |
2 3
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ dom 𝐹 ) |
20 |
18 19
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
21 |
2 4
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ dom 𝐹 ) |
22 |
18 21
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
23 |
17
|
simpld |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
24 |
23 21
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑉 ) ∈ ℝ ) |
25 |
23 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) ∈ ℝ ) |
26 |
24 25
|
ltnled |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ↔ ¬ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑉 ) ) ) |
27 |
9 26
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
28 |
24 27
|
gtned |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑉 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑉 = 𝑈 → ( 𝐹 ‘ 𝑉 ) = ( 𝐹 ‘ 𝑈 ) ) |
30 |
29
|
eqcomd |
⊢ ( 𝑉 = 𝑈 → ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ) |
31 |
30
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑉 ) → 𝑉 ≠ 𝑈 ) |
32 |
28 31
|
syl |
⊢ ( 𝜑 → 𝑉 ≠ 𝑈 ) |
33 |
20 22 7 32
|
leneltd |
⊢ ( 𝜑 → 𝑈 < 𝑉 ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑈 < 𝑉 ) |
35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) |
36 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
37 |
35 36
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) ) |
38 |
37
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) ∨ ( ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑊 ) ∧ ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑉 ) ) ) ) |
39 |
11 12 13 14 34 38
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
40 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 ∈ 𝐴 ) |
41 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 ∈ 𝐴 ) |
42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑋 ∈ 𝐴 ) |
43 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 ∈ ℝ ) |
44 |
2 5
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝐹 ) |
45 |
18 44
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 ∈ ℝ ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 ≤ 𝑊 ) |
48 |
23 44
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ ℝ ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑊 ) ∈ ℝ ) |
50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) |
51 |
49 50
|
gtned |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑊 ) ) |
52 |
|
fveq2 |
⊢ ( 𝑊 = 𝑈 → ( 𝐹 ‘ 𝑊 ) = ( 𝐹 ‘ 𝑈 ) ) |
53 |
52
|
eqcomd |
⊢ ( 𝑊 = 𝑈 → ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑊 ) ) |
54 |
53
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑊 ) → 𝑊 ≠ 𝑈 ) |
55 |
51 54
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 ≠ 𝑈 ) |
56 |
43 46 47 55
|
leneltd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 < 𝑊 ) |
57 |
2 6
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ dom 𝐹 ) |
58 |
18 57
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
59 |
23 57
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
60 |
48 59
|
ltnled |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ) |
61 |
10 60
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
62 |
48 61
|
gtned |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑊 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑋 = 𝑊 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑊 ) ) |
64 |
63
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑊 ) → 𝑋 ≠ 𝑊 ) |
65 |
62 64
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 𝑊 ) |
66 |
45 58 8 65
|
leneltd |
⊢ ( 𝜑 → 𝑊 < 𝑋 ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 < 𝑋 ) |
68 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
69 |
50 68
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) ) |
70 |
69
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑊 ) ∧ ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑊 ) ) ∨ ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) ) ) |
71 |
40 41 42 56 67 70
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
72 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) → 𝑊 ∈ ℝ ) |
73 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) → 𝑈 ∈ ℝ ) |
74 |
39 71 72 73
|
ltlecasei |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
75 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑈 ∈ 𝐴 ) |
76 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑉 ∈ 𝐴 ) |
77 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑋 ∈ 𝐴 ) |
78 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑈 < 𝑉 ) |
79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑉 < 𝑋 ) |
80 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
81 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑉 ) ∈ ℝ ) |
82 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑈 ) ∈ ℝ ) |
83 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
84 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
85 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) ∈ ℝ ) |
86 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) |
87 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
88 |
82 85 83 86 87
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑋 ) ) |
89 |
81 82 83 84 88
|
lttrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) |
91 |
80 90
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ) |
92 |
91
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( ( ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑉 ) ) ∨ ( ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ) ) |
93 |
75 76 77 78 79 92
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
94 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑊 ∈ 𝐴 ) |
95 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 ∈ 𝐴 ) |
96 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑉 ∈ 𝐴 ) |
97 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑊 < 𝑋 ) |
98 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 ∈ ℝ ) |
99 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑉 ∈ ℝ ) |
100 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 ≤ 𝑉 ) |
101 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑉 ) ∈ ℝ ) |
102 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) |
103 |
101 102
|
gtned |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑉 ) ) |
104 |
|
fveq2 |
⊢ ( 𝑉 = 𝑋 → ( 𝐹 ‘ 𝑉 ) = ( 𝐹 ‘ 𝑋 ) ) |
105 |
104
|
eqcomd |
⊢ ( 𝑉 = 𝑋 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑉 ) ) |
106 |
105
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑉 ) → 𝑉 ≠ 𝑋 ) |
107 |
103 106
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑉 ≠ 𝑋 ) |
108 |
98 99 100 107
|
leneltd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 < 𝑉 ) |
109 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
110 |
109 102
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ) |
111 |
110
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ∨ ( ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑊 ) ∧ ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑉 ) ) ) ) |
112 |
94 95 96 97 108 111
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
113 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → 𝑉 ∈ ℝ ) |
114 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → 𝑋 ∈ ℝ ) |
115 |
93 112 113 114
|
ltlecasei |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
116 |
74 115 48 25
|
ltlecasei |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |