| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmltpc.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ ↑pm ℝ ) ) |
| 2 |
|
pmltpc.2 |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 3 |
|
pmltpc.3 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
| 4 |
|
pmltpc.4 |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
| 5 |
|
pmltpc.5 |
⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
| 6 |
|
pmltpc.6 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 |
|
pmltpc.7 |
⊢ ( 𝜑 → 𝑈 ≤ 𝑉 ) |
| 8 |
|
pmltpc.8 |
⊢ ( 𝜑 → 𝑊 ≤ 𝑋 ) |
| 9 |
|
pmltpc.9 |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑉 ) ) |
| 10 |
|
pmltpc.10 |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑊 ) ) |
| 11 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑊 ∈ 𝐴 ) |
| 12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑈 ∈ 𝐴 ) |
| 13 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑉 ∈ 𝐴 ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑊 < 𝑈 ) |
| 15 |
|
reex |
⊢ ℝ ∈ V |
| 16 |
15 15
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 17 |
1 16
|
sylib |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 18 |
17
|
simprd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
| 19 |
2 3
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ dom 𝐹 ) |
| 20 |
18 19
|
sseldd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 21 |
2 4
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ dom 𝐹 ) |
| 22 |
18 21
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
| 23 |
17
|
simpld |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 24 |
23 21
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑉 ) ∈ ℝ ) |
| 25 |
23 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) ∈ ℝ ) |
| 26 |
24 25
|
ltnled |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ↔ ¬ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑉 ) ) ) |
| 27 |
9 26
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
| 28 |
24 27
|
gtned |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑉 ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑉 = 𝑈 → ( 𝐹 ‘ 𝑉 ) = ( 𝐹 ‘ 𝑈 ) ) |
| 30 |
29
|
eqcomd |
⊢ ( 𝑉 = 𝑈 → ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ) |
| 31 |
30
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑉 ) → 𝑉 ≠ 𝑈 ) |
| 32 |
28 31
|
syl |
⊢ ( 𝜑 → 𝑉 ≠ 𝑈 ) |
| 33 |
20 22 7 32
|
leneltd |
⊢ ( 𝜑 → 𝑈 < 𝑉 ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → 𝑈 < 𝑉 ) |
| 35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) |
| 36 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
| 37 |
35 36
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) ) |
| 38 |
37
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ( ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) ∨ ( ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑊 ) ∧ ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 39 |
11 12 13 14 34 38
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑊 < 𝑈 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 40 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 ∈ 𝐴 ) |
| 41 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 ∈ 𝐴 ) |
| 42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑋 ∈ 𝐴 ) |
| 43 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 ∈ ℝ ) |
| 44 |
2 5
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝐹 ) |
| 45 |
18 44
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 ∈ ℝ ) |
| 47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 ≤ 𝑊 ) |
| 48 |
23 44
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ ℝ ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑊 ) ∈ ℝ ) |
| 50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) |
| 51 |
49 50
|
gtned |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑊 ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑊 = 𝑈 → ( 𝐹 ‘ 𝑊 ) = ( 𝐹 ‘ 𝑈 ) ) |
| 53 |
52
|
eqcomd |
⊢ ( 𝑊 = 𝑈 → ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑊 ) ) |
| 54 |
53
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑈 ) ≠ ( 𝐹 ‘ 𝑊 ) → 𝑊 ≠ 𝑈 ) |
| 55 |
51 54
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 ≠ 𝑈 ) |
| 56 |
43 46 47 55
|
leneltd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑈 < 𝑊 ) |
| 57 |
2 6
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ dom 𝐹 ) |
| 58 |
18 57
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 59 |
23 57
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 60 |
48 59
|
ltnled |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ) |
| 61 |
10 60
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 62 |
48 61
|
gtned |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑊 ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑋 = 𝑊 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑊 ) ) |
| 64 |
63
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑊 ) → 𝑋 ≠ 𝑊 ) |
| 65 |
62 64
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 𝑊 ) |
| 66 |
45 58 8 65
|
leneltd |
⊢ ( 𝜑 → 𝑊 < 𝑋 ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → 𝑊 < 𝑋 ) |
| 68 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 69 |
50 68
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) ) |
| 70 |
69
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ( ( ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑊 ) ∧ ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑊 ) ) ∨ ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 71 |
40 41 42 56 67 70
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) ∧ 𝑈 ≤ 𝑊 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 72 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) → 𝑊 ∈ ℝ ) |
| 73 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) → 𝑈 ∈ ℝ ) |
| 74 |
39 71 72 73
|
ltlecasei |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑈 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 75 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑈 ∈ 𝐴 ) |
| 76 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑉 ∈ 𝐴 ) |
| 77 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑋 ∈ 𝐴 ) |
| 78 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑈 < 𝑉 ) |
| 79 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → 𝑉 < 𝑋 ) |
| 80 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
| 81 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑉 ) ∈ ℝ ) |
| 82 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑈 ) ∈ ℝ ) |
| 83 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 84 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ) |
| 85 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) ∈ ℝ ) |
| 86 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) |
| 87 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 88 |
82 85 83 86 87
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 89 |
81 82 83 84 88
|
lttrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 91 |
80 90
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ) |
| 92 |
91
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ( ( ( 𝐹 ‘ 𝑈 ) < ( 𝐹 ‘ 𝑉 ) ∧ ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑉 ) ) ∨ ( ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑈 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 93 |
75 76 77 78 79 92
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑉 < 𝑋 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 94 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑊 ∈ 𝐴 ) |
| 95 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 ∈ 𝐴 ) |
| 96 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑉 ∈ 𝐴 ) |
| 97 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑊 < 𝑋 ) |
| 98 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 ∈ ℝ ) |
| 99 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑉 ∈ ℝ ) |
| 100 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 ≤ 𝑉 ) |
| 101 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑉 ) ∈ ℝ ) |
| 102 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 103 |
101 102
|
gtned |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑉 ) ) |
| 104 |
|
fveq2 |
⊢ ( 𝑉 = 𝑋 → ( 𝐹 ‘ 𝑉 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 105 |
104
|
eqcomd |
⊢ ( 𝑉 = 𝑋 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑉 ) ) |
| 106 |
105
|
necon3i |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑉 ) → 𝑉 ≠ 𝑋 ) |
| 107 |
103 106
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑉 ≠ 𝑋 ) |
| 108 |
98 99 100 107
|
leneltd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → 𝑋 < 𝑉 ) |
| 109 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ) |
| 110 |
109 102
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ) |
| 111 |
110
|
orcd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑊 ) < ( 𝐹 ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑉 ) < ( 𝐹 ‘ 𝑋 ) ) ∨ ( ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑊 ) ∧ ( 𝐹 ‘ 𝑋 ) < ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 112 |
94 95 96 97 108 111
|
pmltpclem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) ∧ 𝑋 ≤ 𝑉 ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 113 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → 𝑉 ∈ ℝ ) |
| 114 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → 𝑋 ∈ ℝ ) |
| 115 |
93 112 113 114
|
ltlecasei |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑈 ) ≤ ( 𝐹 ‘ 𝑊 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
| 116 |
74 115 48 25
|
ltlecasei |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |