| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmltpc.1 |  |-  ( ph -> F e. ( RR ^pm RR ) ) | 
						
							| 2 |  | pmltpc.2 |  |-  ( ph -> A C_ dom F ) | 
						
							| 3 |  | pmltpc.3 |  |-  ( ph -> U e. A ) | 
						
							| 4 |  | pmltpc.4 |  |-  ( ph -> V e. A ) | 
						
							| 5 |  | pmltpc.5 |  |-  ( ph -> W e. A ) | 
						
							| 6 |  | pmltpc.6 |  |-  ( ph -> X e. A ) | 
						
							| 7 |  | pmltpc.7 |  |-  ( ph -> U <_ V ) | 
						
							| 8 |  | pmltpc.8 |  |-  ( ph -> W <_ X ) | 
						
							| 9 |  | pmltpc.9 |  |-  ( ph -> -. ( F ` U ) <_ ( F ` V ) ) | 
						
							| 10 |  | pmltpc.10 |  |-  ( ph -> -. ( F ` X ) <_ ( F ` W ) ) | 
						
							| 11 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> W e. A ) | 
						
							| 12 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> U e. A ) | 
						
							| 13 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> V e. A ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> W < U ) | 
						
							| 15 |  | reex |  |-  RR e. _V | 
						
							| 16 | 15 15 | elpm2 |  |-  ( F e. ( RR ^pm RR ) <-> ( F : dom F --> RR /\ dom F C_ RR ) ) | 
						
							| 17 | 1 16 | sylib |  |-  ( ph -> ( F : dom F --> RR /\ dom F C_ RR ) ) | 
						
							| 18 | 17 | simprd |  |-  ( ph -> dom F C_ RR ) | 
						
							| 19 | 2 3 | sseldd |  |-  ( ph -> U e. dom F ) | 
						
							| 20 | 18 19 | sseldd |  |-  ( ph -> U e. RR ) | 
						
							| 21 | 2 4 | sseldd |  |-  ( ph -> V e. dom F ) | 
						
							| 22 | 18 21 | sseldd |  |-  ( ph -> V e. RR ) | 
						
							| 23 | 17 | simpld |  |-  ( ph -> F : dom F --> RR ) | 
						
							| 24 | 23 21 | ffvelcdmd |  |-  ( ph -> ( F ` V ) e. RR ) | 
						
							| 25 | 23 19 | ffvelcdmd |  |-  ( ph -> ( F ` U ) e. RR ) | 
						
							| 26 | 24 25 | ltnled |  |-  ( ph -> ( ( F ` V ) < ( F ` U ) <-> -. ( F ` U ) <_ ( F ` V ) ) ) | 
						
							| 27 | 9 26 | mpbird |  |-  ( ph -> ( F ` V ) < ( F ` U ) ) | 
						
							| 28 | 24 27 | gtned |  |-  ( ph -> ( F ` U ) =/= ( F ` V ) ) | 
						
							| 29 |  | fveq2 |  |-  ( V = U -> ( F ` V ) = ( F ` U ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( V = U -> ( F ` U ) = ( F ` V ) ) | 
						
							| 31 | 30 | necon3i |  |-  ( ( F ` U ) =/= ( F ` V ) -> V =/= U ) | 
						
							| 32 | 28 31 | syl |  |-  ( ph -> V =/= U ) | 
						
							| 33 | 20 22 7 32 | leneltd |  |-  ( ph -> U < V ) | 
						
							| 34 | 33 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> U < V ) | 
						
							| 35 |  | simplr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( F ` W ) < ( F ` U ) ) | 
						
							| 36 | 27 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( F ` V ) < ( F ` U ) ) | 
						
							| 37 | 35 36 | jca |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( ( F ` W ) < ( F ` U ) /\ ( F ` V ) < ( F ` U ) ) ) | 
						
							| 38 | 37 | orcd |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( ( ( F ` W ) < ( F ` U ) /\ ( F ` V ) < ( F ` U ) ) \/ ( ( F ` U ) < ( F ` W ) /\ ( F ` U ) < ( F ` V ) ) ) ) | 
						
							| 39 | 11 12 13 14 34 38 | pmltpclem1 |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) | 
						
							| 40 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U e. A ) | 
						
							| 41 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W e. A ) | 
						
							| 42 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> X e. A ) | 
						
							| 43 | 20 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U e. RR ) | 
						
							| 44 | 2 5 | sseldd |  |-  ( ph -> W e. dom F ) | 
						
							| 45 | 18 44 | sseldd |  |-  ( ph -> W e. RR ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W e. RR ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U <_ W ) | 
						
							| 48 | 23 44 | ffvelcdmd |  |-  ( ph -> ( F ` W ) e. RR ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` W ) e. RR ) | 
						
							| 50 |  | simplr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` W ) < ( F ` U ) ) | 
						
							| 51 | 49 50 | gtned |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` U ) =/= ( F ` W ) ) | 
						
							| 52 |  | fveq2 |  |-  ( W = U -> ( F ` W ) = ( F ` U ) ) | 
						
							| 53 | 52 | eqcomd |  |-  ( W = U -> ( F ` U ) = ( F ` W ) ) | 
						
							| 54 | 53 | necon3i |  |-  ( ( F ` U ) =/= ( F ` W ) -> W =/= U ) | 
						
							| 55 | 51 54 | syl |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W =/= U ) | 
						
							| 56 | 43 46 47 55 | leneltd |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U < W ) | 
						
							| 57 | 2 6 | sseldd |  |-  ( ph -> X e. dom F ) | 
						
							| 58 | 18 57 | sseldd |  |-  ( ph -> X e. RR ) | 
						
							| 59 | 23 57 | ffvelcdmd |  |-  ( ph -> ( F ` X ) e. RR ) | 
						
							| 60 | 48 59 | ltnled |  |-  ( ph -> ( ( F ` W ) < ( F ` X ) <-> -. ( F ` X ) <_ ( F ` W ) ) ) | 
						
							| 61 | 10 60 | mpbird |  |-  ( ph -> ( F ` W ) < ( F ` X ) ) | 
						
							| 62 | 48 61 | gtned |  |-  ( ph -> ( F ` X ) =/= ( F ` W ) ) | 
						
							| 63 |  | fveq2 |  |-  ( X = W -> ( F ` X ) = ( F ` W ) ) | 
						
							| 64 | 63 | necon3i |  |-  ( ( F ` X ) =/= ( F ` W ) -> X =/= W ) | 
						
							| 65 | 62 64 | syl |  |-  ( ph -> X =/= W ) | 
						
							| 66 | 45 58 8 65 | leneltd |  |-  ( ph -> W < X ) | 
						
							| 67 | 66 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W < X ) | 
						
							| 68 | 61 | ad2antrr |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` W ) < ( F ` X ) ) | 
						
							| 69 | 50 68 | jca |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( ( F ` W ) < ( F ` U ) /\ ( F ` W ) < ( F ` X ) ) ) | 
						
							| 70 | 69 | olcd |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( ( ( F ` U ) < ( F ` W ) /\ ( F ` X ) < ( F ` W ) ) \/ ( ( F ` W ) < ( F ` U ) /\ ( F ` W ) < ( F ` X ) ) ) ) | 
						
							| 71 | 40 41 42 56 67 70 | pmltpclem1 |  |-  ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) | 
						
							| 72 | 45 | adantr |  |-  ( ( ph /\ ( F ` W ) < ( F ` U ) ) -> W e. RR ) | 
						
							| 73 | 20 | adantr |  |-  ( ( ph /\ ( F ` W ) < ( F ` U ) ) -> U e. RR ) | 
						
							| 74 | 39 71 72 73 | ltlecasei |  |-  ( ( ph /\ ( F ` W ) < ( F ` U ) ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) | 
						
							| 75 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> U e. A ) | 
						
							| 76 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> V e. A ) | 
						
							| 77 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> X e. A ) | 
						
							| 78 | 33 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> U < V ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> V < X ) | 
						
							| 80 | 27 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( F ` V ) < ( F ` U ) ) | 
						
							| 81 | 24 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` V ) e. RR ) | 
						
							| 82 | 25 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` U ) e. RR ) | 
						
							| 83 | 59 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` X ) e. RR ) | 
						
							| 84 | 27 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` V ) < ( F ` U ) ) | 
						
							| 85 | 48 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` W ) e. RR ) | 
						
							| 86 |  | simpr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` U ) <_ ( F ` W ) ) | 
						
							| 87 | 61 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` W ) < ( F ` X ) ) | 
						
							| 88 | 82 85 83 86 87 | lelttrd |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` U ) < ( F ` X ) ) | 
						
							| 89 | 81 82 83 84 88 | lttrd |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` V ) < ( F ` X ) ) | 
						
							| 90 | 89 | adantr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( F ` V ) < ( F ` X ) ) | 
						
							| 91 | 80 90 | jca |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( ( F ` V ) < ( F ` U ) /\ ( F ` V ) < ( F ` X ) ) ) | 
						
							| 92 | 91 | olcd |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( ( ( F ` U ) < ( F ` V ) /\ ( F ` X ) < ( F ` V ) ) \/ ( ( F ` V ) < ( F ` U ) /\ ( F ` V ) < ( F ` X ) ) ) ) | 
						
							| 93 | 75 76 77 78 79 92 | pmltpclem1 |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) | 
						
							| 94 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> W e. A ) | 
						
							| 95 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X e. A ) | 
						
							| 96 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> V e. A ) | 
						
							| 97 | 66 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> W < X ) | 
						
							| 98 | 58 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X e. RR ) | 
						
							| 99 | 22 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> V e. RR ) | 
						
							| 100 |  | simpr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X <_ V ) | 
						
							| 101 | 24 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` V ) e. RR ) | 
						
							| 102 | 89 | adantr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` V ) < ( F ` X ) ) | 
						
							| 103 | 101 102 | gtned |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` X ) =/= ( F ` V ) ) | 
						
							| 104 |  | fveq2 |  |-  ( V = X -> ( F ` V ) = ( F ` X ) ) | 
						
							| 105 | 104 | eqcomd |  |-  ( V = X -> ( F ` X ) = ( F ` V ) ) | 
						
							| 106 | 105 | necon3i |  |-  ( ( F ` X ) =/= ( F ` V ) -> V =/= X ) | 
						
							| 107 | 103 106 | syl |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> V =/= X ) | 
						
							| 108 | 98 99 100 107 | leneltd |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X < V ) | 
						
							| 109 | 61 | ad2antrr |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` W ) < ( F ` X ) ) | 
						
							| 110 | 109 102 | jca |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( ( F ` W ) < ( F ` X ) /\ ( F ` V ) < ( F ` X ) ) ) | 
						
							| 111 | 110 | orcd |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( ( ( F ` W ) < ( F ` X ) /\ ( F ` V ) < ( F ` X ) ) \/ ( ( F ` X ) < ( F ` W ) /\ ( F ` X ) < ( F ` V ) ) ) ) | 
						
							| 112 | 94 95 96 97 108 111 | pmltpclem1 |  |-  ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) | 
						
							| 113 | 22 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> V e. RR ) | 
						
							| 114 | 58 | adantr |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> X e. RR ) | 
						
							| 115 | 93 112 113 114 | ltlecasei |  |-  ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) | 
						
							| 116 | 74 115 48 25 | ltlecasei |  |-  ( ph -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |