| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmltpc.1 |
|- ( ph -> F e. ( RR ^pm RR ) ) |
| 2 |
|
pmltpc.2 |
|- ( ph -> A C_ dom F ) |
| 3 |
|
pmltpc.3 |
|- ( ph -> U e. A ) |
| 4 |
|
pmltpc.4 |
|- ( ph -> V e. A ) |
| 5 |
|
pmltpc.5 |
|- ( ph -> W e. A ) |
| 6 |
|
pmltpc.6 |
|- ( ph -> X e. A ) |
| 7 |
|
pmltpc.7 |
|- ( ph -> U <_ V ) |
| 8 |
|
pmltpc.8 |
|- ( ph -> W <_ X ) |
| 9 |
|
pmltpc.9 |
|- ( ph -> -. ( F ` U ) <_ ( F ` V ) ) |
| 10 |
|
pmltpc.10 |
|- ( ph -> -. ( F ` X ) <_ ( F ` W ) ) |
| 11 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> W e. A ) |
| 12 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> U e. A ) |
| 13 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> V e. A ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> W < U ) |
| 15 |
|
reex |
|- RR e. _V |
| 16 |
15 15
|
elpm2 |
|- ( F e. ( RR ^pm RR ) <-> ( F : dom F --> RR /\ dom F C_ RR ) ) |
| 17 |
1 16
|
sylib |
|- ( ph -> ( F : dom F --> RR /\ dom F C_ RR ) ) |
| 18 |
17
|
simprd |
|- ( ph -> dom F C_ RR ) |
| 19 |
2 3
|
sseldd |
|- ( ph -> U e. dom F ) |
| 20 |
18 19
|
sseldd |
|- ( ph -> U e. RR ) |
| 21 |
2 4
|
sseldd |
|- ( ph -> V e. dom F ) |
| 22 |
18 21
|
sseldd |
|- ( ph -> V e. RR ) |
| 23 |
17
|
simpld |
|- ( ph -> F : dom F --> RR ) |
| 24 |
23 21
|
ffvelcdmd |
|- ( ph -> ( F ` V ) e. RR ) |
| 25 |
23 19
|
ffvelcdmd |
|- ( ph -> ( F ` U ) e. RR ) |
| 26 |
24 25
|
ltnled |
|- ( ph -> ( ( F ` V ) < ( F ` U ) <-> -. ( F ` U ) <_ ( F ` V ) ) ) |
| 27 |
9 26
|
mpbird |
|- ( ph -> ( F ` V ) < ( F ` U ) ) |
| 28 |
24 27
|
gtned |
|- ( ph -> ( F ` U ) =/= ( F ` V ) ) |
| 29 |
|
fveq2 |
|- ( V = U -> ( F ` V ) = ( F ` U ) ) |
| 30 |
29
|
eqcomd |
|- ( V = U -> ( F ` U ) = ( F ` V ) ) |
| 31 |
30
|
necon3i |
|- ( ( F ` U ) =/= ( F ` V ) -> V =/= U ) |
| 32 |
28 31
|
syl |
|- ( ph -> V =/= U ) |
| 33 |
20 22 7 32
|
leneltd |
|- ( ph -> U < V ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> U < V ) |
| 35 |
|
simplr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( F ` W ) < ( F ` U ) ) |
| 36 |
27
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( F ` V ) < ( F ` U ) ) |
| 37 |
35 36
|
jca |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( ( F ` W ) < ( F ` U ) /\ ( F ` V ) < ( F ` U ) ) ) |
| 38 |
37
|
orcd |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> ( ( ( F ` W ) < ( F ` U ) /\ ( F ` V ) < ( F ` U ) ) \/ ( ( F ` U ) < ( F ` W ) /\ ( F ` U ) < ( F ` V ) ) ) ) |
| 39 |
11 12 13 14 34 38
|
pmltpclem1 |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ W < U ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
| 40 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U e. A ) |
| 41 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W e. A ) |
| 42 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> X e. A ) |
| 43 |
20
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U e. RR ) |
| 44 |
2 5
|
sseldd |
|- ( ph -> W e. dom F ) |
| 45 |
18 44
|
sseldd |
|- ( ph -> W e. RR ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W e. RR ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U <_ W ) |
| 48 |
23 44
|
ffvelcdmd |
|- ( ph -> ( F ` W ) e. RR ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` W ) e. RR ) |
| 50 |
|
simplr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` W ) < ( F ` U ) ) |
| 51 |
49 50
|
gtned |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` U ) =/= ( F ` W ) ) |
| 52 |
|
fveq2 |
|- ( W = U -> ( F ` W ) = ( F ` U ) ) |
| 53 |
52
|
eqcomd |
|- ( W = U -> ( F ` U ) = ( F ` W ) ) |
| 54 |
53
|
necon3i |
|- ( ( F ` U ) =/= ( F ` W ) -> W =/= U ) |
| 55 |
51 54
|
syl |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W =/= U ) |
| 56 |
43 46 47 55
|
leneltd |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> U < W ) |
| 57 |
2 6
|
sseldd |
|- ( ph -> X e. dom F ) |
| 58 |
18 57
|
sseldd |
|- ( ph -> X e. RR ) |
| 59 |
23 57
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. RR ) |
| 60 |
48 59
|
ltnled |
|- ( ph -> ( ( F ` W ) < ( F ` X ) <-> -. ( F ` X ) <_ ( F ` W ) ) ) |
| 61 |
10 60
|
mpbird |
|- ( ph -> ( F ` W ) < ( F ` X ) ) |
| 62 |
48 61
|
gtned |
|- ( ph -> ( F ` X ) =/= ( F ` W ) ) |
| 63 |
|
fveq2 |
|- ( X = W -> ( F ` X ) = ( F ` W ) ) |
| 64 |
63
|
necon3i |
|- ( ( F ` X ) =/= ( F ` W ) -> X =/= W ) |
| 65 |
62 64
|
syl |
|- ( ph -> X =/= W ) |
| 66 |
45 58 8 65
|
leneltd |
|- ( ph -> W < X ) |
| 67 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> W < X ) |
| 68 |
61
|
ad2antrr |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( F ` W ) < ( F ` X ) ) |
| 69 |
50 68
|
jca |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( ( F ` W ) < ( F ` U ) /\ ( F ` W ) < ( F ` X ) ) ) |
| 70 |
69
|
olcd |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> ( ( ( F ` U ) < ( F ` W ) /\ ( F ` X ) < ( F ` W ) ) \/ ( ( F ` W ) < ( F ` U ) /\ ( F ` W ) < ( F ` X ) ) ) ) |
| 71 |
40 41 42 56 67 70
|
pmltpclem1 |
|- ( ( ( ph /\ ( F ` W ) < ( F ` U ) ) /\ U <_ W ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
| 72 |
45
|
adantr |
|- ( ( ph /\ ( F ` W ) < ( F ` U ) ) -> W e. RR ) |
| 73 |
20
|
adantr |
|- ( ( ph /\ ( F ` W ) < ( F ` U ) ) -> U e. RR ) |
| 74 |
39 71 72 73
|
ltlecasei |
|- ( ( ph /\ ( F ` W ) < ( F ` U ) ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
| 75 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> U e. A ) |
| 76 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> V e. A ) |
| 77 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> X e. A ) |
| 78 |
33
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> U < V ) |
| 79 |
|
simpr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> V < X ) |
| 80 |
27
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( F ` V ) < ( F ` U ) ) |
| 81 |
24
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` V ) e. RR ) |
| 82 |
25
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` U ) e. RR ) |
| 83 |
59
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` X ) e. RR ) |
| 84 |
27
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` V ) < ( F ` U ) ) |
| 85 |
48
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` W ) e. RR ) |
| 86 |
|
simpr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` U ) <_ ( F ` W ) ) |
| 87 |
61
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` W ) < ( F ` X ) ) |
| 88 |
82 85 83 86 87
|
lelttrd |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` U ) < ( F ` X ) ) |
| 89 |
81 82 83 84 88
|
lttrd |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> ( F ` V ) < ( F ` X ) ) |
| 90 |
89
|
adantr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( F ` V ) < ( F ` X ) ) |
| 91 |
80 90
|
jca |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( ( F ` V ) < ( F ` U ) /\ ( F ` V ) < ( F ` X ) ) ) |
| 92 |
91
|
olcd |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> ( ( ( F ` U ) < ( F ` V ) /\ ( F ` X ) < ( F ` V ) ) \/ ( ( F ` V ) < ( F ` U ) /\ ( F ` V ) < ( F ` X ) ) ) ) |
| 93 |
75 76 77 78 79 92
|
pmltpclem1 |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ V < X ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
| 94 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> W e. A ) |
| 95 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X e. A ) |
| 96 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> V e. A ) |
| 97 |
66
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> W < X ) |
| 98 |
58
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X e. RR ) |
| 99 |
22
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> V e. RR ) |
| 100 |
|
simpr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X <_ V ) |
| 101 |
24
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` V ) e. RR ) |
| 102 |
89
|
adantr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` V ) < ( F ` X ) ) |
| 103 |
101 102
|
gtned |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` X ) =/= ( F ` V ) ) |
| 104 |
|
fveq2 |
|- ( V = X -> ( F ` V ) = ( F ` X ) ) |
| 105 |
104
|
eqcomd |
|- ( V = X -> ( F ` X ) = ( F ` V ) ) |
| 106 |
105
|
necon3i |
|- ( ( F ` X ) =/= ( F ` V ) -> V =/= X ) |
| 107 |
103 106
|
syl |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> V =/= X ) |
| 108 |
98 99 100 107
|
leneltd |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> X < V ) |
| 109 |
61
|
ad2antrr |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( F ` W ) < ( F ` X ) ) |
| 110 |
109 102
|
jca |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( ( F ` W ) < ( F ` X ) /\ ( F ` V ) < ( F ` X ) ) ) |
| 111 |
110
|
orcd |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> ( ( ( F ` W ) < ( F ` X ) /\ ( F ` V ) < ( F ` X ) ) \/ ( ( F ` X ) < ( F ` W ) /\ ( F ` X ) < ( F ` V ) ) ) ) |
| 112 |
94 95 96 97 108 111
|
pmltpclem1 |
|- ( ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) /\ X <_ V ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
| 113 |
22
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> V e. RR ) |
| 114 |
58
|
adantr |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> X e. RR ) |
| 115 |
93 112 113 114
|
ltlecasei |
|- ( ( ph /\ ( F ` U ) <_ ( F ` W ) ) -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |
| 116 |
74 115 48 25
|
ltlecasei |
|- ( ph -> E. a e. A E. b e. A E. c e. A ( a < b /\ b < c /\ ( ( ( F ` a ) < ( F ` b ) /\ ( F ` c ) < ( F ` b ) ) \/ ( ( F ` b ) < ( F ` a ) /\ ( F ` b ) < ( F ` c ) ) ) ) ) |