Metamath Proof Explorer


Theorem pmltpc

Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014)

Ref Expression
Assertion pmltpc ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ∨ ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 rexanali ( ∃ 𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ↔ ¬ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
2 1 rexbii ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ↔ ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
3 rexnal ( ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
4 2 3 bitri ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
5 rexanali ( ∃ 𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ¬ ∀ 𝑤𝐴 ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) )
6 5 rexbii ( ∃ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ∃ 𝑧𝐴 ¬ ∀ 𝑤𝐴 ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) )
7 rexnal ( ∃ 𝑧𝐴 ¬ ∀ 𝑤𝐴 ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ¬ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) )
8 breq1 ( 𝑧 = 𝑥 → ( 𝑧𝑤𝑥𝑤 ) )
9 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
10 9 breq2d ( 𝑧 = 𝑥 → ( ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ↔ ( 𝐹𝑤 ) ≤ ( 𝐹𝑥 ) ) )
11 8 10 imbi12d ( 𝑧 = 𝑥 → ( ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ( 𝑥𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑥 ) ) ) )
12 breq2 ( 𝑤 = 𝑦 → ( 𝑥𝑤𝑥𝑦 ) )
13 fveq2 ( 𝑤 = 𝑦 → ( 𝐹𝑤 ) = ( 𝐹𝑦 ) )
14 13 breq1d ( 𝑤 = 𝑦 → ( ( 𝐹𝑤 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
15 12 14 imbi12d ( 𝑤 = 𝑦 → ( ( 𝑥𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑥 ) ) ↔ ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) )
16 11 15 cbvral2vw ( ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
17 7 16 xchbinx ( ∃ 𝑧𝐴 ¬ ∀ 𝑤𝐴 ( 𝑧𝑤 → ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
18 6 17 bitri ( ∃ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
19 4 18 anbi12i ( ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ↔ ( ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) )
20 reeanv ( ∃ 𝑥𝐴𝑧𝐴 ( ∃ 𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ↔ ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) )
21 ioran ( ¬ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) ↔ ( ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) )
22 19 20 21 3bitr4i ( ∃ 𝑥𝐴𝑧𝐴 ( ∃ 𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ↔ ¬ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) )
23 reeanv ( ∃ 𝑦𝐴𝑤𝐴 ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ↔ ( ∃ 𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) )
24 simplll ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) )
25 24 simpld ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝐹 ∈ ( ℝ ↑pm ℝ ) )
26 24 simprd ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝐴 ⊆ dom 𝐹 )
27 simpllr ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → ( 𝑥𝐴𝑧𝐴 ) )
28 27 simpld ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝑥𝐴 )
29 simplrl ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝑦𝐴 )
30 27 simprd ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝑧𝐴 )
31 simplrr ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝑤𝐴 )
32 simprll ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝑥𝑦 )
33 simprrl ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → 𝑧𝑤 )
34 simprlr ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) )
35 simprrr ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) )
36 25 26 28 29 30 31 32 33 34 35 pmltpclem2 ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) ∧ ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) ) → ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) )
37 36 ex ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) → ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
38 37 rexlimdvva ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ∃ 𝑦𝐴𝑤𝐴 ( ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) → ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
39 23 38 syl5bir ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥𝐴𝑧𝐴 ) ) → ( ( ∃ 𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) → ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
40 39 rexlimdvva ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∃ 𝑥𝐴𝑧𝐴 ( ∃ 𝑦𝐴 ( 𝑥𝑦 ∧ ¬ ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∧ ∃ 𝑤𝐴 ( 𝑧𝑤 ∧ ¬ ( 𝐹𝑤 ) ≤ ( 𝐹𝑧 ) ) ) → ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
41 22 40 syl5bir ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ¬ ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) → ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
42 41 orrd ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) ∨ ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
43 df-3or ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ∨ ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) ↔ ( ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) ∨ ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )
44 42 43 sylibr ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) ∨ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ∨ ∃ 𝑎𝐴𝑏𝐴𝑐𝐴 ( 𝑎 < 𝑏𝑏 < 𝑐 ∧ ( ( ( 𝐹𝑎 ) < ( 𝐹𝑏 ) ∧ ( 𝐹𝑐 ) < ( 𝐹𝑏 ) ) ∨ ( ( 𝐹𝑏 ) < ( 𝐹𝑎 ) ∧ ( 𝐹𝑏 ) < ( 𝐹𝑐 ) ) ) ) ) )