Step |
Hyp |
Ref |
Expression |
1 |
|
rexanali |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
3 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
4 |
2 3
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
5 |
|
rexanali |
⊢ ( ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ¬ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
6 |
5
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐴 ¬ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
7 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐴 ¬ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ≤ 𝑤 ↔ 𝑥 ≤ 𝑤 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑥 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑦 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
14 |
13
|
breq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
16 |
11 15
|
cbvral2vw |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
7 16
|
xchbinx |
⊢ ( ∃ 𝑧 ∈ 𝐴 ¬ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
6 17
|
bitri |
⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
4 18
|
anbi12i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
20 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) |
21 |
|
ioran |
⊢ ( ¬ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
22 |
19 20 21
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ¬ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
23 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ↔ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) |
24 |
|
simplll |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ) |
25 |
24
|
simpld |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 ∈ ( ℝ ↑pm ℝ ) ) |
26 |
24
|
simprd |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐴 ⊆ dom 𝐹 ) |
27 |
|
simpllr |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
28 |
27
|
simpld |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝑥 ∈ 𝐴 ) |
29 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝑦 ∈ 𝐴 ) |
30 |
27
|
simprd |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝑧 ∈ 𝐴 ) |
31 |
|
simplrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝑤 ∈ 𝐴 ) |
32 |
|
simprll |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝑥 ≤ 𝑦 ) |
33 |
|
simprrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝑧 ≤ 𝑤 ) |
34 |
|
simprlr |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
35 |
|
simprrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
36 |
25 26 28 29 30 31 32 33 34 35
|
pmltpclem2 |
⊢ ( ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) |
37 |
36
|
ex |
⊢ ( ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
38 |
37
|
rexlimdvva |
⊢ ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
39 |
23 38
|
syl5bir |
⊢ ( ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
40 |
39
|
rexlimdvva |
⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 ∧ ¬ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑤 ∈ 𝐴 ( 𝑧 ≤ 𝑤 ∧ ¬ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
41 |
22 40
|
syl5bir |
⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ¬ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
42 |
41
|
orrd |
⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ∨ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
43 |
|
df-3or |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ∨ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ∨ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |
44 |
42 43
|
sylibr |
⊢ ( ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∨ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ∨ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐴 ∃ 𝑐 ∈ 𝐴 ( 𝑎 < 𝑏 ∧ 𝑏 < 𝑐 ∧ ( ( ( 𝐹 ‘ 𝑎 ) < ( 𝐹 ‘ 𝑏 ) ∧ ( 𝐹 ‘ 𝑐 ) < ( 𝐹 ‘ 𝑏 ) ) ∨ ( ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) < ( 𝐹 ‘ 𝑐 ) ) ) ) ) ) |