Metamath Proof Explorer


Theorem ivthlem1

Description: Lemma for ivth . The set S of all x values with ( Fx ) less than U is lower bounded by A and upper bounded by B . (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypotheses ivth.1 ( 𝜑𝐴 ∈ ℝ )
ivth.2 ( 𝜑𝐵 ∈ ℝ )
ivth.3 ( 𝜑𝑈 ∈ ℝ )
ivth.4 ( 𝜑𝐴 < 𝐵 )
ivth.5 ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 )
ivth.7 ( 𝜑𝐹 ∈ ( 𝐷cn→ ℂ ) )
ivth.8 ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
ivth.9 ( 𝜑 → ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) )
ivth.10 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹𝑥 ) ≤ 𝑈 }
Assertion ivthlem1 ( 𝜑 → ( 𝐴𝑆 ∧ ∀ 𝑧𝑆 𝑧𝐵 ) )

Proof

Step Hyp Ref Expression
1 ivth.1 ( 𝜑𝐴 ∈ ℝ )
2 ivth.2 ( 𝜑𝐵 ∈ ℝ )
3 ivth.3 ( 𝜑𝑈 ∈ ℝ )
4 ivth.4 ( 𝜑𝐴 < 𝐵 )
5 ivth.5 ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 )
6 ivth.7 ( 𝜑𝐹 ∈ ( 𝐷cn→ ℂ ) )
7 ivth.8 ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
8 ivth.9 ( 𝜑 → ( ( 𝐹𝐴 ) < 𝑈𝑈 < ( 𝐹𝐵 ) ) )
9 ivth.10 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹𝑥 ) ≤ 𝑈 }
10 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
11 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
12 1 2 4 ltled ( 𝜑𝐴𝐵 )
13 lbicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
14 10 11 12 13 syl3anc ( 𝜑𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
15 fveq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
16 15 eleq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) ∈ ℝ ↔ ( 𝐹𝐴 ) ∈ ℝ ) )
17 7 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹𝑥 ) ∈ ℝ )
18 16 17 14 rspcdva ( 𝜑 → ( 𝐹𝐴 ) ∈ ℝ )
19 8 simpld ( 𝜑 → ( 𝐹𝐴 ) < 𝑈 )
20 18 3 19 ltled ( 𝜑 → ( 𝐹𝐴 ) ≤ 𝑈 )
21 15 breq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) ≤ 𝑈 ↔ ( 𝐹𝐴 ) ≤ 𝑈 ) )
22 21 9 elrab2 ( 𝐴𝑆 ↔ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹𝐴 ) ≤ 𝑈 ) )
23 14 20 22 sylanbrc ( 𝜑𝐴𝑆 )
24 9 ssrab3 𝑆 ⊆ ( 𝐴 [,] 𝐵 )
25 24 sseli ( 𝑧𝑆𝑧 ∈ ( 𝐴 [,] 𝐵 ) )
26 iccleub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧𝐵 )
27 26 3expia ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → 𝑧𝐵 ) )
28 10 11 27 syl2anc ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → 𝑧𝐵 ) )
29 25 28 syl5 ( 𝜑 → ( 𝑧𝑆𝑧𝐵 ) )
30 29 ralrimiv ( 𝜑 → ∀ 𝑧𝑆 𝑧𝐵 )
31 23 30 jca ( 𝜑 → ( 𝐴𝑆 ∧ ∀ 𝑧𝑆 𝑧𝐵 ) )