| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivth.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ivth.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ivth.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 4 |
|
ivth.4 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 5 |
|
ivth.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
| 6 |
|
ivth.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
| 7 |
|
ivth.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
|
ivth.9 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) < 𝑈 ∧ 𝑈 < ( 𝐹 ‘ 𝐵 ) ) ) |
| 9 |
|
ivth.10 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 } |
| 10 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 12 |
1 2 4
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 13 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) ) |
| 17 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 18 |
16 17 14
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 19 |
8
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) < 𝑈 ) |
| 20 |
18 3 19
|
ltled |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) |
| 21 |
15
|
breq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) ) |
| 22 |
21 9
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ 𝑈 ) ) |
| 23 |
14 20 22
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 24 |
9
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 25 |
24
|
sseli |
⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ≤ 𝐵 ) |
| 27 |
26
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → 𝑧 ≤ 𝐵 ) ) |
| 28 |
10 11 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → 𝑧 ≤ 𝐵 ) ) |
| 29 |
25 28
|
syl5 |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 → 𝑧 ≤ 𝐵 ) ) |
| 30 |
29
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) |
| 31 |
23 30
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 𝑧 ≤ 𝐵 ) ) |