| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivth.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
ivth.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
ivth.3 |
|- ( ph -> U e. RR ) |
| 4 |
|
ivth.4 |
|- ( ph -> A < B ) |
| 5 |
|
ivth.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
| 6 |
|
ivth.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
| 7 |
|
ivth.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
| 8 |
|
ivth.9 |
|- ( ph -> ( ( F ` A ) < U /\ U < ( F ` B ) ) ) |
| 9 |
|
ivth.10 |
|- S = { x e. ( A [,] B ) | ( F ` x ) <_ U } |
| 10 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 11 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 12 |
1 2 4
|
ltled |
|- ( ph -> A <_ B ) |
| 13 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 14 |
10 11 12 13
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 15 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 16 |
15
|
eleq1d |
|- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
| 17 |
7
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 18 |
16 17 14
|
rspcdva |
|- ( ph -> ( F ` A ) e. RR ) |
| 19 |
8
|
simpld |
|- ( ph -> ( F ` A ) < U ) |
| 20 |
18 3 19
|
ltled |
|- ( ph -> ( F ` A ) <_ U ) |
| 21 |
15
|
breq1d |
|- ( x = A -> ( ( F ` x ) <_ U <-> ( F ` A ) <_ U ) ) |
| 22 |
21 9
|
elrab2 |
|- ( A e. S <-> ( A e. ( A [,] B ) /\ ( F ` A ) <_ U ) ) |
| 23 |
14 20 22
|
sylanbrc |
|- ( ph -> A e. S ) |
| 24 |
9
|
ssrab3 |
|- S C_ ( A [,] B ) |
| 25 |
24
|
sseli |
|- ( z e. S -> z e. ( A [,] B ) ) |
| 26 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ z e. ( A [,] B ) ) -> z <_ B ) |
| 27 |
26
|
3expia |
|- ( ( A e. RR* /\ B e. RR* ) -> ( z e. ( A [,] B ) -> z <_ B ) ) |
| 28 |
10 11 27
|
syl2anc |
|- ( ph -> ( z e. ( A [,] B ) -> z <_ B ) ) |
| 29 |
25 28
|
syl5 |
|- ( ph -> ( z e. S -> z <_ B ) ) |
| 30 |
29
|
ralrimiv |
|- ( ph -> A. z e. S z <_ B ) |
| 31 |
23 30
|
jca |
|- ( ph -> ( A e. S /\ A. z e. S z <_ B ) ) |