Metamath Proof Explorer


Theorem ivthlem1

Description: Lemma for ivth . The set S of all x values with ( Fx ) less than U is lower bounded by A and upper bounded by B . (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivth.9 φFA<UU<FB
ivth.10 S=xAB|FxU
Assertion ivthlem1 φASzSzB

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivth.9 φFA<UU<FB
9 ivth.10 S=xAB|FxU
10 1 rexrd φA*
11 2 rexrd φB*
12 1 2 4 ltled φAB
13 lbicc2 A*B*ABAAB
14 10 11 12 13 syl3anc φAAB
15 fveq2 x=AFx=FA
16 15 eleq1d x=AFxFA
17 7 ralrimiva φxABFx
18 16 17 14 rspcdva φFA
19 8 simpld φFA<U
20 18 3 19 ltled φFAU
21 15 breq1d x=AFxUFAU
22 21 9 elrab2 ASAABFAU
23 14 20 22 sylanbrc φAS
24 9 ssrab3 SAB
25 24 sseli zSzAB
26 iccleub A*B*zABzB
27 26 3expia A*B*zABzB
28 10 11 27 syl2anc φzABzB
29 25 28 syl5 φzSzB
30 29 ralrimiv φzSzB
31 23 30 jca φASzSzB