| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsdiagghm.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwsdiagghm.b |
|- B = ( Base ` R ) |
| 3 |
|
pwsdiagghm.f |
|- F = ( x e. B |-> ( I X. { x } ) ) |
| 4 |
|
grpmnd |
|- ( R e. Grp -> R e. Mnd ) |
| 5 |
1 2 3
|
pwsdiagmhm |
|- ( ( R e. Mnd /\ I e. W ) -> F e. ( R MndHom Y ) ) |
| 6 |
4 5
|
sylan |
|- ( ( R e. Grp /\ I e. W ) -> F e. ( R MndHom Y ) ) |
| 7 |
1
|
pwsgrp |
|- ( ( R e. Grp /\ I e. W ) -> Y e. Grp ) |
| 8 |
|
ghmmhmb |
|- ( ( R e. Grp /\ Y e. Grp ) -> ( R GrpHom Y ) = ( R MndHom Y ) ) |
| 9 |
7 8
|
syldan |
|- ( ( R e. Grp /\ I e. W ) -> ( R GrpHom Y ) = ( R MndHom Y ) ) |
| 10 |
6 9
|
eleqtrrd |
|- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |