| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recvs.r |  |-  R = ( ringLMod ` RRfld ) | 
						
							| 2 |  | refld |  |-  RRfld e. Field | 
						
							| 3 |  | isfld |  |-  ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( RRfld e. Field -> RRfld e. CRing ) | 
						
							| 5 | 4 | crngringd |  |-  ( RRfld e. Field -> RRfld e. Ring ) | 
						
							| 6 |  | rlmlmod |  |-  ( RRfld e. Ring -> ( ringLMod ` RRfld ) e. LMod ) | 
						
							| 7 | 2 5 6 | mp2b |  |-  ( ringLMod ` RRfld ) e. LMod | 
						
							| 8 |  | rlmsca |  |-  ( RRfld e. Field -> RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) ) | 
						
							| 9 | 2 8 | ax-mp |  |-  RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) | 
						
							| 10 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 11 | 9 10 | eqtr3i |  |-  ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) | 
						
							| 12 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 13 | 12 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 14 |  | eqid |  |-  ( Scalar ` ( ringLMod ` RRfld ) ) = ( Scalar ` ( ringLMod ` RRfld ) ) | 
						
							| 15 | 14 | isclmi |  |-  ( ( ( ringLMod ` RRfld ) e. LMod /\ ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) /\ RR e. ( SubRing ` CCfld ) ) -> ( ringLMod ` RRfld ) e. CMod ) | 
						
							| 16 | 7 11 13 15 | mp3an |  |-  ( ringLMod ` RRfld ) e. CMod | 
						
							| 17 | 12 | simpri |  |-  RRfld e. DivRing | 
						
							| 18 |  | rlmlvec |  |-  ( RRfld e. DivRing -> ( ringLMod ` RRfld ) e. LVec ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( ringLMod ` RRfld ) e. LVec | 
						
							| 20 | 16 19 | elini |  |-  ( ringLMod ` RRfld ) e. ( CMod i^i LVec ) | 
						
							| 21 |  | df-cvs |  |-  CVec = ( CMod i^i LVec ) | 
						
							| 22 | 20 1 21 | 3eltr4i |  |-  R e. CVec |