| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recvs.r |
⊢ 𝑅 = ( ringLMod ‘ ℝfld ) |
| 2 |
|
refld |
⊢ ℝfld ∈ Field |
| 3 |
|
isfld |
⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) |
| 4 |
3
|
simprbi |
⊢ ( ℝfld ∈ Field → ℝfld ∈ CRing ) |
| 5 |
4
|
crngringd |
⊢ ( ℝfld ∈ Field → ℝfld ∈ Ring ) |
| 6 |
|
rlmlmod |
⊢ ( ℝfld ∈ Ring → ( ringLMod ‘ ℝfld ) ∈ LMod ) |
| 7 |
2 5 6
|
mp2b |
⊢ ( ringLMod ‘ ℝfld ) ∈ LMod |
| 8 |
|
rlmsca |
⊢ ( ℝfld ∈ Field → ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) ) |
| 9 |
2 8
|
ax-mp |
⊢ ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
| 10 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 11 |
9 10
|
eqtr3i |
⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) |
| 12 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 13 |
12
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 14 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
| 15 |
14
|
isclmi |
⊢ ( ( ( ringLMod ‘ ℝfld ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℝfld ) ∈ ℂMod ) |
| 16 |
7 11 13 15
|
mp3an |
⊢ ( ringLMod ‘ ℝfld ) ∈ ℂMod |
| 17 |
12
|
simpri |
⊢ ℝfld ∈ DivRing |
| 18 |
|
rlmlvec |
⊢ ( ℝfld ∈ DivRing → ( ringLMod ‘ ℝfld ) ∈ LVec ) |
| 19 |
17 18
|
ax-mp |
⊢ ( ringLMod ‘ ℝfld ) ∈ LVec |
| 20 |
16 19
|
elini |
⊢ ( ringLMod ‘ ℝfld ) ∈ ( ℂMod ∩ LVec ) |
| 21 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
| 22 |
20 1 21
|
3eltr4i |
⊢ 𝑅 ∈ ℂVec |