| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recvs.r |
|- R = ( ringLMod ` RRfld ) |
| 2 |
|
refld |
|- RRfld e. Field |
| 3 |
|
fldidom |
|- ( RRfld e. Field -> RRfld e. IDomn ) |
| 4 |
|
isidom |
|- ( RRfld e. IDomn <-> ( RRfld e. CRing /\ RRfld e. Domn ) ) |
| 5 |
|
crngring |
|- ( RRfld e. CRing -> RRfld e. Ring ) |
| 6 |
5
|
adantr |
|- ( ( RRfld e. CRing /\ RRfld e. Domn ) -> RRfld e. Ring ) |
| 7 |
4 6
|
sylbi |
|- ( RRfld e. IDomn -> RRfld e. Ring ) |
| 8 |
3 7
|
syl |
|- ( RRfld e. Field -> RRfld e. Ring ) |
| 9 |
2 8
|
ax-mp |
|- RRfld e. Ring |
| 10 |
|
rlmlmod |
|- ( RRfld e. Ring -> ( ringLMod ` RRfld ) e. LMod ) |
| 11 |
9 10
|
ax-mp |
|- ( ringLMod ` RRfld ) e. LMod |
| 12 |
|
rlmsca |
|- ( RRfld e. Field -> RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) ) |
| 13 |
2 12
|
ax-mp |
|- RRfld = ( Scalar ` ( ringLMod ` RRfld ) ) |
| 14 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 15 |
13 14
|
eqtr3i |
|- ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) |
| 16 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 17 |
16
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 18 |
|
eqid |
|- ( Scalar ` ( ringLMod ` RRfld ) ) = ( Scalar ` ( ringLMod ` RRfld ) ) |
| 19 |
18
|
isclmi |
|- ( ( ( ringLMod ` RRfld ) e. LMod /\ ( Scalar ` ( ringLMod ` RRfld ) ) = ( CCfld |`s RR ) /\ RR e. ( SubRing ` CCfld ) ) -> ( ringLMod ` RRfld ) e. CMod ) |
| 20 |
11 15 17 19
|
mp3an |
|- ( ringLMod ` RRfld ) e. CMod |
| 21 |
16
|
simpri |
|- RRfld e. DivRing |
| 22 |
|
rlmlvec |
|- ( RRfld e. DivRing -> ( ringLMod ` RRfld ) e. LVec ) |
| 23 |
21 22
|
ax-mp |
|- ( ringLMod ` RRfld ) e. LVec |
| 24 |
20 23
|
elini |
|- ( ringLMod ` RRfld ) e. ( CMod i^i LVec ) |
| 25 |
|
df-cvs |
|- CVec = ( CMod i^i LVec ) |
| 26 |
24 1 25
|
3eltr4i |
|- R e. CVec |