| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recvs.r |
⊢ 𝑅 = ( ringLMod ‘ ℝfld ) |
| 2 |
|
refld |
⊢ ℝfld ∈ Field |
| 3 |
|
fldidom |
⊢ ( ℝfld ∈ Field → ℝfld ∈ IDomn ) |
| 4 |
|
isidom |
⊢ ( ℝfld ∈ IDomn ↔ ( ℝfld ∈ CRing ∧ ℝfld ∈ Domn ) ) |
| 5 |
|
crngring |
⊢ ( ℝfld ∈ CRing → ℝfld ∈ Ring ) |
| 6 |
5
|
adantr |
⊢ ( ( ℝfld ∈ CRing ∧ ℝfld ∈ Domn ) → ℝfld ∈ Ring ) |
| 7 |
4 6
|
sylbi |
⊢ ( ℝfld ∈ IDomn → ℝfld ∈ Ring ) |
| 8 |
3 7
|
syl |
⊢ ( ℝfld ∈ Field → ℝfld ∈ Ring ) |
| 9 |
2 8
|
ax-mp |
⊢ ℝfld ∈ Ring |
| 10 |
|
rlmlmod |
⊢ ( ℝfld ∈ Ring → ( ringLMod ‘ ℝfld ) ∈ LMod ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ringLMod ‘ ℝfld ) ∈ LMod |
| 12 |
|
rlmsca |
⊢ ( ℝfld ∈ Field → ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) ) |
| 13 |
2 12
|
ax-mp |
⊢ ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
| 14 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 15 |
13 14
|
eqtr3i |
⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) |
| 16 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 17 |
16
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
| 19 |
18
|
isclmi |
⊢ ( ( ( ringLMod ‘ ℝfld ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℝfld ) ∈ ℂMod ) |
| 20 |
11 15 17 19
|
mp3an |
⊢ ( ringLMod ‘ ℝfld ) ∈ ℂMod |
| 21 |
16
|
simpri |
⊢ ℝfld ∈ DivRing |
| 22 |
|
rlmlvec |
⊢ ( ℝfld ∈ DivRing → ( ringLMod ‘ ℝfld ) ∈ LVec ) |
| 23 |
21 22
|
ax-mp |
⊢ ( ringLMod ‘ ℝfld ) ∈ LVec |
| 24 |
20 23
|
elini |
⊢ ( ringLMod ‘ ℝfld ) ∈ ( ℂMod ∩ LVec ) |
| 25 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
| 26 |
24 1 25
|
3eltr4i |
⊢ 𝑅 ∈ ℂVec |