Metamath Proof Explorer


Theorem recvsOLD

Description: Obsolete version of recvs as of 23-Nov-2024. (Contributed by AV, 22-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis recvs.r R=ringLModfld
Assertion recvsOLD RℂVec

Proof

Step Hyp Ref Expression
1 recvs.r R=ringLModfld
2 refld fldField
3 fldidom fldFieldfldIDomn
4 isidom fldIDomnfldCRingfldDomn
5 crngring fldCRingfldRing
6 5 adantr fldCRingfldDomnfldRing
7 4 6 sylbi fldIDomnfldRing
8 3 7 syl fldFieldfldRing
9 2 8 ax-mp fldRing
10 rlmlmod fldRingringLModfldLMod
11 9 10 ax-mp ringLModfldLMod
12 rlmsca fldFieldfld=ScalarringLModfld
13 2 12 ax-mp fld=ScalarringLModfld
14 df-refld fld=fld𝑠
15 13 14 eqtr3i ScalarringLModfld=fld𝑠
16 resubdrg SubRingfldfldDivRing
17 16 simpli SubRingfld
18 eqid ScalarringLModfld=ScalarringLModfld
19 18 isclmi ringLModfldLModScalarringLModfld=fld𝑠SubRingfldringLModfldCMod
20 11 15 17 19 mp3an ringLModfldCMod
21 16 simpri fldDivRing
22 rlmlvec fldDivRingringLModfldLVec
23 21 22 ax-mp ringLModfldLVec
24 20 23 elini ringLModfldCModLVec
25 df-cvs ℂVec=CModLVec
26 24 1 25 3eltr4i RℂVec