| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
|- ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) <-> ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) ) |
| 2 |
|
eldmressnALTV |
|- ( x e. _V -> ( x e. dom ( R |` { A } ) <-> ( x = A /\ A e. dom R ) ) ) |
| 3 |
2
|
elv |
|- ( x e. dom ( R |` { A } ) <-> ( x = A /\ A e. dom R ) ) |
| 4 |
3
|
simplbi |
|- ( x e. dom ( R |` { A } ) -> x = A ) |
| 5 |
4
|
adantr |
|- ( ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) -> x = A ) |
| 6 |
1 5
|
sylbi |
|- ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x = A ) |
| 7 |
6
|
a1i |
|- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x = A ) ) |
| 8 |
|
elrnressn |
|- ( ( A e. V /\ x e. _V ) -> ( x e. ran ( R |` { A } ) <-> A R x ) ) |
| 9 |
8
|
elvd |
|- ( A e. V -> ( x e. ran ( R |` { A } ) <-> A R x ) ) |
| 10 |
9
|
biimpd |
|- ( A e. V -> ( x e. ran ( R |` { A } ) -> A R x ) ) |
| 11 |
10
|
adantld |
|- ( A e. V -> ( ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) -> A R x ) ) |
| 12 |
1 11
|
biimtrid |
|- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> A R x ) ) |
| 13 |
4
|
eqcomd |
|- ( x e. dom ( R |` { A } ) -> A = x ) |
| 14 |
13
|
breq1d |
|- ( x e. dom ( R |` { A } ) -> ( A R x <-> x R x ) ) |
| 15 |
14
|
adantr |
|- ( ( x e. dom ( R |` { A } ) /\ x e. ran ( R |` { A } ) ) -> ( A R x <-> x R x ) ) |
| 16 |
1 15
|
sylbi |
|- ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> ( A R x <-> x R x ) ) |
| 17 |
12 16
|
mpbidi |
|- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x R x ) ) |
| 18 |
7 17
|
jcad |
|- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> ( x = A /\ x R x ) ) ) |
| 19 |
|
brressn |
|- ( ( x e. _V /\ x e. _V ) -> ( x ( R |` { A } ) x <-> ( x = A /\ x R x ) ) ) |
| 20 |
19
|
el2v |
|- ( x ( R |` { A } ) x <-> ( x = A /\ x R x ) ) |
| 21 |
18 20
|
imbitrrdi |
|- ( A e. V -> ( x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) -> x ( R |` { A } ) x ) ) |
| 22 |
21
|
ralrimiv |
|- ( A e. V -> A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x ) |