Step |
Hyp |
Ref |
Expression |
1 |
|
resmgmhm2.u |
|- U = ( T |`s X ) |
2 |
|
mgmhmrcl |
|- ( F e. ( S MgmHom U ) -> ( S e. Mgm /\ U e. Mgm ) ) |
3 |
2
|
simpld |
|- ( F e. ( S MgmHom U ) -> S e. Mgm ) |
4 |
|
submgmrcl |
|- ( X e. ( SubMgm ` T ) -> T e. Mgm ) |
5 |
3 4
|
anim12i |
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> ( S e. Mgm /\ T e. Mgm ) ) |
6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
7 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
8 |
6 7
|
mgmhmf |
|- ( F e. ( S MgmHom U ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
9 |
1
|
submgmbas |
|- ( X e. ( SubMgm ` T ) -> X = ( Base ` U ) ) |
10 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
11 |
10
|
submgmss |
|- ( X e. ( SubMgm ` T ) -> X C_ ( Base ` T ) ) |
12 |
9 11
|
eqsstrrd |
|- ( X e. ( SubMgm ` T ) -> ( Base ` U ) C_ ( Base ` T ) ) |
13 |
|
fss |
|- ( ( F : ( Base ` S ) --> ( Base ` U ) /\ ( Base ` U ) C_ ( Base ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
14 |
8 12 13
|
syl2an |
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
15 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
16 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
17 |
6 15 16
|
mgmhmlin |
|- ( ( F e. ( S MgmHom U ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
18 |
17
|
3expb |
|- ( ( F e. ( S MgmHom U ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
19 |
18
|
adantlr |
|- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
20 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
21 |
1 20
|
ressplusg |
|- ( X e. ( SubMgm ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
23 |
22
|
oveqd |
|- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
24 |
19 23
|
eqtr4d |
|- ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
25 |
24
|
ralrimivva |
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
26 |
14 25
|
jca |
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) |
27 |
6 10 15 20
|
ismgmhm |
|- ( F e. ( S MgmHom T ) <-> ( ( S e. Mgm /\ T e. Mgm ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) ) |
28 |
5 26 27
|
sylanbrc |
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) ) |