Metamath Proof Explorer


Theorem resmgmhm2

Description: One direction of resmgmhm2b . (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypothesis resmgmhm2.u
|- U = ( T |`s X )
Assertion resmgmhm2
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) )

Proof

Step Hyp Ref Expression
1 resmgmhm2.u
 |-  U = ( T |`s X )
2 mgmhmrcl
 |-  ( F e. ( S MgmHom U ) -> ( S e. Mgm /\ U e. Mgm ) )
3 2 simpld
 |-  ( F e. ( S MgmHom U ) -> S e. Mgm )
4 submgmrcl
 |-  ( X e. ( SubMgm ` T ) -> T e. Mgm )
5 3 4 anim12i
 |-  ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> ( S e. Mgm /\ T e. Mgm ) )
6 eqid
 |-  ( Base ` S ) = ( Base ` S )
7 eqid
 |-  ( Base ` U ) = ( Base ` U )
8 6 7 mgmhmf
 |-  ( F e. ( S MgmHom U ) -> F : ( Base ` S ) --> ( Base ` U ) )
9 1 submgmbas
 |-  ( X e. ( SubMgm ` T ) -> X = ( Base ` U ) )
10 eqid
 |-  ( Base ` T ) = ( Base ` T )
11 10 submgmss
 |-  ( X e. ( SubMgm ` T ) -> X C_ ( Base ` T ) )
12 9 11 eqsstrrd
 |-  ( X e. ( SubMgm ` T ) -> ( Base ` U ) C_ ( Base ` T ) )
13 fss
 |-  ( ( F : ( Base ` S ) --> ( Base ` U ) /\ ( Base ` U ) C_ ( Base ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) )
14 8 12 13 syl2an
 |-  ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) )
15 eqid
 |-  ( +g ` S ) = ( +g ` S )
16 eqid
 |-  ( +g ` U ) = ( +g ` U )
17 6 15 16 mgmhmlin
 |-  ( ( F e. ( S MgmHom U ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) )
18 17 3expb
 |-  ( ( F e. ( S MgmHom U ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) )
19 18 adantlr
 |-  ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) )
20 eqid
 |-  ( +g ` T ) = ( +g ` T )
21 1 20 ressplusg
 |-  ( X e. ( SubMgm ` T ) -> ( +g ` T ) = ( +g ` U ) )
22 21 ad2antlr
 |-  ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) )
23 22 oveqd
 |-  ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) )
24 19 23 eqtr4d
 |-  ( ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) )
25 24 ralrimivva
 |-  ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) )
26 14 25 jca
 |-  ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) )
27 6 10 15 20 ismgmhm
 |-  ( F e. ( S MgmHom T ) <-> ( ( S e. Mgm /\ T e. Mgm ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) ) )
28 5 26 27 sylanbrc
 |-  ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) )