| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmgmhm2.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | mgmhmrcl | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  →  ( 𝑆  ∈  Mgm  ∧  𝑈  ∈  Mgm ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  →  𝑆  ∈  Mgm ) | 
						
							| 4 |  | submgmrcl | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  𝑇  ∈  Mgm ) | 
						
							| 5 | 3 4 | anim12i | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  →  ( 𝑆  ∈  Mgm  ∧  𝑇  ∈  Mgm ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 8 | 6 7 | mgmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) | 
						
							| 9 | 1 | submgmbas | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 11 | 10 | submgmss | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  𝑋  ⊆  ( Base ‘ 𝑇 ) ) | 
						
							| 12 | 9 11 | eqsstrrd | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑇 ) ) | 
						
							| 13 |  | fss | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 )  ∧  ( Base ‘ 𝑈 )  ⊆  ( Base ‘ 𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 14 | 8 12 13 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 16 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 17 | 6 15 16 | mgmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 18 | 17 | 3expb | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 21 | 1 20 | ressplusg | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 23 | 22 | oveqd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 24 | 19 23 | eqtr4d | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 24 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 26 | 14 25 | jca | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 27 | 6 10 15 20 | ismgmhm | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  ↔  ( ( 𝑆  ∈  Mgm  ∧  𝑇  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 28 | 5 26 27 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) ) |