| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmgmhm2.u | ⊢ 𝑈  =  ( 𝑇  ↾s  𝑋 ) | 
						
							| 2 |  | mgmhmrcl | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  →  ( 𝑆  ∈  Mgm  ∧  𝑇  ∈  Mgm ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  →  𝑆  ∈  Mgm ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝑆  ∈  Mgm ) | 
						
							| 5 | 1 | submgmmgm | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  𝑈  ∈  Mgm ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝑈  ∈  Mgm ) | 
						
							| 7 | 4 6 | jca | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  ( 𝑆  ∈  Mgm  ∧  𝑈  ∈  Mgm ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 10 | 8 9 | mgmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 12 | 11 | ffnd | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  ran  𝐹  ⊆  𝑋 ) | 
						
							| 14 |  | df-f | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋  ↔  ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  ran  𝐹  ⊆  𝑋 ) ) | 
						
							| 15 | 12 13 14 | sylanbrc | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ) | 
						
							| 16 | 1 | submgmbas | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝑋  =  ( Base ‘ 𝑈 ) ) | 
						
							| 18 | 17 | feq3d | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋  ↔  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) ) | 
						
							| 19 | 15 18 | mpbid | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 21 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 22 | 8 20 21 | mgmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 23 | 22 | 3expb | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 24 | 23 | adantll | ⊢ ( ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 1 21 | ressplusg | ⊢ ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 27 | 26 | oveqd | ⊢ ( ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 | 24 27 | eqtrd | ⊢ ( ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 | 28 | ralrimivva | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 30 | 19 29 | jca | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 32 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 33 | 8 31 20 32 | ismgmhm | ⊢ ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ↔  ( ( 𝑆  ∈  Mgm  ∧  𝑈  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 34 | 7 30 33 | sylanbrc | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) )  →  𝐹  ∈  ( 𝑆  MgmHom  𝑈 ) ) | 
						
							| 35 | 1 | resmgmhm2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  MgmHom  𝑈 )  ∧  𝑋  ∈  ( SubMgm ‘ 𝑇 ) )  →  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) ) | 
						
							| 36 | 35 | ancoms | ⊢ ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑈 ) )  →  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) ) | 
						
							| 37 | 36 | adantlr | ⊢ ( ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  ∧  𝐹  ∈  ( 𝑆  MgmHom  𝑈 ) )  →  𝐹  ∈  ( 𝑆  MgmHom  𝑇 ) ) | 
						
							| 38 | 34 37 | impbida | ⊢ ( ( 𝑋  ∈  ( SubMgm ‘ 𝑇 )  ∧  ran  𝐹  ⊆  𝑋 )  →  ( 𝐹  ∈  ( 𝑆  MgmHom  𝑇 )  ↔  𝐹  ∈  ( 𝑆  MgmHom  𝑈 ) ) ) |