| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resmgmhm2.u |  |-  U = ( T |`s X ) | 
						
							| 2 |  | mgmhmrcl |  |-  ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) | 
						
							| 3 | 2 | simpld |  |-  ( F e. ( S MgmHom T ) -> S e. Mgm ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> S e. Mgm ) | 
						
							| 5 | 1 | submgmmgm |  |-  ( X e. ( SubMgm ` T ) -> U e. Mgm ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> U e. Mgm ) | 
						
							| 7 | 4 6 | jca |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( S e. Mgm /\ U e. Mgm ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 9 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 10 | 8 9 | mgmhmf |  |-  ( F e. ( S MgmHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 12 | 11 | ffnd |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F Fn ( Base ` S ) ) | 
						
							| 13 |  | simplr |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ran F C_ X ) | 
						
							| 14 |  | df-f |  |-  ( F : ( Base ` S ) --> X <-> ( F Fn ( Base ` S ) /\ ran F C_ X ) ) | 
						
							| 15 | 12 13 14 | sylanbrc |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> X ) | 
						
							| 16 | 1 | submgmbas |  |-  ( X e. ( SubMgm ` T ) -> X = ( Base ` U ) ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> X = ( Base ` U ) ) | 
						
							| 18 | 17 | feq3d |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( F : ( Base ` S ) --> X <-> F : ( Base ` S ) --> ( Base ` U ) ) ) | 
						
							| 19 | 15 18 | mpbid |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` U ) ) | 
						
							| 20 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 21 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 22 | 8 20 21 | mgmhmlin |  |-  ( ( F e. ( S MgmHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 23 | 22 | 3expb |  |-  ( ( F e. ( S MgmHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 24 | 23 | adantll |  |-  ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) | 
						
							| 25 | 1 21 | ressplusg |  |-  ( X e. ( SubMgm ` T ) -> ( +g ` T ) = ( +g ` U ) ) | 
						
							| 26 | 25 | ad3antrrr |  |-  ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) | 
						
							| 27 | 26 | oveqd |  |-  ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 28 | 24 27 | eqtrd |  |-  ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 29 | 28 | ralrimivva |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) | 
						
							| 30 | 19 29 | jca |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 32 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 33 | 8 31 20 32 | ismgmhm |  |-  ( F e. ( S MgmHom U ) <-> ( ( S e. Mgm /\ U e. Mgm ) /\ ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) ) ) | 
						
							| 34 | 7 30 33 | sylanbrc |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F e. ( S MgmHom U ) ) | 
						
							| 35 | 1 | resmgmhm2 |  |-  ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) ) | 
						
							| 36 | 35 | ancoms |  |-  ( ( X e. ( SubMgm ` T ) /\ F e. ( S MgmHom U ) ) -> F e. ( S MgmHom T ) ) | 
						
							| 37 | 36 | adantlr |  |-  ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom U ) ) -> F e. ( S MgmHom T ) ) | 
						
							| 38 | 34 37 | impbida |  |-  ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) -> ( F e. ( S MgmHom T ) <-> F e. ( S MgmHom U ) ) ) |