Step |
Hyp |
Ref |
Expression |
1 |
|
resmgmhm2.u |
|- U = ( T |`s X ) |
2 |
|
mgmhmrcl |
|- ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) |
3 |
2
|
simpld |
|- ( F e. ( S MgmHom T ) -> S e. Mgm ) |
4 |
3
|
adantl |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> S e. Mgm ) |
5 |
1
|
submgmmgm |
|- ( X e. ( SubMgm ` T ) -> U e. Mgm ) |
6 |
5
|
ad2antrr |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> U e. Mgm ) |
7 |
4 6
|
jca |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( S e. Mgm /\ U e. Mgm ) ) |
8 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
9 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
10 |
8 9
|
mgmhmf |
|- ( F e. ( S MgmHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
11 |
10
|
adantl |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
12 |
11
|
ffnd |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F Fn ( Base ` S ) ) |
13 |
|
simplr |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ran F C_ X ) |
14 |
|
df-f |
|- ( F : ( Base ` S ) --> X <-> ( F Fn ( Base ` S ) /\ ran F C_ X ) ) |
15 |
12 13 14
|
sylanbrc |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> X ) |
16 |
1
|
submgmbas |
|- ( X e. ( SubMgm ` T ) -> X = ( Base ` U ) ) |
17 |
16
|
ad2antrr |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> X = ( Base ` U ) ) |
18 |
17
|
feq3d |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( F : ( Base ` S ) --> X <-> F : ( Base ` S ) --> ( Base ` U ) ) ) |
19 |
15 18
|
mpbid |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
20 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
21 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
22 |
8 20 21
|
mgmhmlin |
|- ( ( F e. ( S MgmHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
23 |
22
|
3expb |
|- ( ( F e. ( S MgmHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
24 |
23
|
adantll |
|- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
25 |
1 21
|
ressplusg |
|- ( X e. ( SubMgm ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
27 |
26
|
oveqd |
|- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
28 |
24 27
|
eqtrd |
|- ( ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
29 |
28
|
ralrimivva |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
30 |
19 29
|
jca |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) ) |
31 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
32 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
33 |
8 31 20 32
|
ismgmhm |
|- ( F e. ( S MgmHom U ) <-> ( ( S e. Mgm /\ U e. Mgm ) /\ ( F : ( Base ` S ) --> ( Base ` U ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) ) ) |
34 |
7 30 33
|
sylanbrc |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom T ) ) -> F e. ( S MgmHom U ) ) |
35 |
1
|
resmgmhm2 |
|- ( ( F e. ( S MgmHom U ) /\ X e. ( SubMgm ` T ) ) -> F e. ( S MgmHom T ) ) |
36 |
35
|
ancoms |
|- ( ( X e. ( SubMgm ` T ) /\ F e. ( S MgmHom U ) ) -> F e. ( S MgmHom T ) ) |
37 |
36
|
adantlr |
|- ( ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) /\ F e. ( S MgmHom U ) ) -> F e. ( S MgmHom T ) ) |
38 |
34 37
|
impbida |
|- ( ( X e. ( SubMgm ` T ) /\ ran F C_ X ) -> ( F e. ( S MgmHom T ) <-> F e. ( S MgmHom U ) ) ) |